Patents by Inventor Sven Lindfors
Sven Lindfors has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 7018478Abstract: A method of growing a thin film onto a substrate placed in a reaction chamber according to the ALD method by subjecting the substrate to alternate and successive surface reactions. The method includes providing a first reactant source and providing an inactive gas source. A first reactant is fed from the first reactant source in the form of repeated alternating pulses to a reaction chamber via a first conduit. The first reactant is allowed to react with the surface of the substrate in the reaction chamber. Inactive gas is fed from the inactive gas source into the first conduit via a second conduit that is connected to the first conduit at a first connection point so as to create a gas phase barrier between the repeated alternating pulses of the first reactant entering the reaction chamber. The inactive gas is withdrawn from said first conduit via a third conduit connected to the first conduit at a second connection point.Type: GrantFiled: July 16, 2004Date of Patent: March 28, 2006Assignee: ASM International N.V.Inventors: Sven Lindfors, Pekka T. Soininen
-
Patent number: 6939579Abstract: The present invention relates to improved methods and apparatus for atomic layer deposition (ALD) of thin films on substrates such as wafers and flat panel displays. The invention provides an ALD reactor comprising a first temperature regulating system to control the temperature of the substrate and a second temperature regulating system to independently control the temperature of the reaction chamber walls. The invention also provides a method for ALD of a film onto a substrate in a reaction chamber, in which the temperature of the substrate is maintained to maximize ALD on the substrate while the temperature of the reaction chamber walls is set to minimize film growth thereon, whether by ALD, condensation, physisorption or thermal decomposition. The temperature of the walls may be maintained at the same temperature as the substrate, or higher or lower than the substrate temperature, depending upon the particular reaction being used.Type: GrantFiled: March 7, 2001Date of Patent: September 6, 2005Assignee: ASM International N.V.Inventors: Niklas Bondestam, Sven Lindfors
-
Patent number: 6889864Abstract: The invention relates to a source chemical container assembly, comprising a metal container functioning as a vacuum chamber and provided with a removable closure, which removable closure seals against the metal container with a metal seal. In order to facilitate easy recharging of the container assembly, compressive force is applied to the metal seal through a tension chain. In a preferred embodiment of the invention the metal seal and the tension chain are provided along a circumference of said metal container. The assembly can comprise an inner container in which the source chemical is contained.Type: GrantFiled: June 28, 2002Date of Patent: May 10, 2005Assignee: ASM International, NVInventors: Sven Lindfors, Jan von Zweygbergk, Marko J. Kukkonen
-
Patent number: 6881263Abstract: The present invention relates to the production of thin films. In particular, the invention concerns a method of growing a thin film onto a substrate, in which method the substrate is placed in a reaction chamber and is subjected to surface reactions of a plurality of vapor-phase reactants according to the ALD method. The present invention is based on replacing the mechanical valves conventionally used for regulating the pulsing of the reactants, which valves tend to wear and intrude metallic particles into the process flow, with an improved precursor dosing system. The invention is characterized by choking the reactant flow between the vapour-phase pulses while still allowing a minimum flow of said reactant, and redirecting the reactant at these times to an other destination than the reaction chamber. The redirection is performed with an inactive gas, which is also used for ventilating the reaction chamber between the vapour-phase pulses.Type: GrantFiled: July 20, 2001Date of Patent: April 19, 2005Assignee: ASM Microchemistry OyInventors: Sven Lindfors, Pekka T. Soininen
-
Publication number: 20050056211Abstract: The present invention relates to the production of thin films. In particular, the invention concerns a method of growing a thin film onto a substrate, in which method the substrate is placed in a reaction chamber and is subjected to surface reactions of a plurality of vapor-phase reactants according to the ALD method. The present invention is based on replacing the mechanical valves conventionally used for regulating the pulsing of the reactants, which valves tend to wear and intrude metallic particles into the process flow, with an improved precursor dosing system. The invention is characterized by choking the reactant flow between the vapour-phase pulses while still allowing a minimum flow of said reactant, and redirecting the reactant at these times to an other destination than the reaction chamber. The redirection is performed with an inactive gas, which is also used for ventilating the reaction chamber between the vapour-phase pulses.Type: ApplicationFiled: October 28, 2004Publication date: March 17, 2005Inventors: Sven Lindfors, Pekka Soininen
-
Publication number: 20040261706Abstract: A method of growing a thin film onto a substrate placed in a reaction chamber according to the ALD method by subjecting the substrate to alternate and successive surface reactions. The method includes providing a first reactant source and providing an inactive gas source. A first reactant is fed from the first reactant source in the form of repeated alternating pulses to a reaction chamber via a first conduit. The first reactant is allowed to react with the surface of the substrate in the reaction chamber. Inactive gas is fed from the inactive gas source into the first conduit via a second conduit that is connected to the first conduit at a first connection point so as to create a gas phase barrier between the repeated alternating pulses of the first reactant entering the reaction chamber. The inactive gas is withdrawn from said first conduit via a third conduit connected to the first conduit at a second connection point.Type: ApplicationFiled: July 16, 2004Publication date: December 30, 2004Inventors: Sven Lindfors, Pekka T. Soininen
-
Publication number: 20040216668Abstract: An apparatus for depositing thin films onto a substrate is provided. The apparatus includes a gas exchange plate that is positioned within a reaction chamber having a platform. The gas exchange plate may be positioned above or below the platform and comprises a first plurality of passages and a second plurality of passages machined therein. The first plurality of passages is in fluid communication with a first reactant source and a purge gas source. Similarly, the second plurality of passages is in fluid communication with a second reactant source and a purge gas source. The first and the second plurality of passages are fluidly connected to first and second plurality of apertures that open to the reaction chamber. Gases are removed from the reaction space through third plurality of apertures within the gas exchange plate that are in fluid communication with exhaust space.Type: ApplicationFiled: February 18, 2004Publication date: November 4, 2004Inventors: Sven Lindfors, Pekka Juha Soininen
-
Publication number: 20040216665Abstract: A method and apparatus for depositing thin films onto a substrate is provided. The apparatus includes a gas injection structure that is positioned within a reaction chamber that has a platform. The gas injection structure may be positioned above or below the platform and comprises a first gas injector and a second gas injector. The first gas injector is in fluid communication with a first reactant source and a purge gas source. Similarly, the second gas injector is in fluid communication with a second reactant source and a purge gas source. The first and second injectors include hollow tubes with apertures opening to the reaction chamber. In one configuration, the tubes are in the form of interleaved branching tubes forming showerhead rakes. Methods are provided for deposition, in which multiple pulses of purge and reactant gases are provided for each purge and reactant step.Type: ApplicationFiled: April 29, 2003Publication date: November 4, 2004Applicant: ASM International N.V.Inventors: Pekka J. Soininen, Sven Lindfors
-
Patent number: 6783590Abstract: A method of growing a thin film onto a substrate placed in a reaction chamber according to the ALD method by subjecting the substrate to alternate and successive surface reactions. The method includes providing a first reactant source and providing an inactive gas source. A first reactant is fed from the first reactant source in the form of repeated alternating pulses to a reaction chamber via a first conduit. The first reactant is allowed to react with the surface of the substrate in the reaction chamber. Inactive gas is fed from the inactive gas source into the first conduit via a second conduit that is connected to the first conduit at a first connection point so as to create a gas phase barrier between the repeated alternating pulses of the first reactant entering the reaction chamber. The inactive gas is withdrawn from said first conduit via a third conduit connected to the first conduit at a second connection point.Type: GrantFiled: April 16, 2001Date of Patent: August 31, 2004Assignee: ASM International N.V.Inventors: Sven Lindfors, Pekka T. Soininen
-
Publication number: 20040079286Abstract: Methods and structures provide vaporized reactant from a liquid source to a vapor deposition reactor, such as an atomic layer deposition (ALD) reactor. A storage container holds the bulk of liquid reactant (or solid reactant dissolved in a liquid solvent) outside of the reactor hot zone(s), and so are not subject to decomposition from prolonged exposure to high temperatures. The storage container is in fluid communication with a vaporization chamber within a hot zone of the reactor, such that a high vapor pressure can be maintained within the vaporization chamber. Refilling the storage container outside of the hot zone(s) is simplified, and the bulk of the liquid reactant is not subject to prolonged exposure to destabilizing temperatures. At the same time, the advantages of maintaining a vaporization chamber within a hot zone are maintained.Type: ApplicationFiled: July 8, 2003Publication date: April 29, 2004Inventor: Sven Lindfors
-
Publication number: 20030224107Abstract: The present invention relates to the production of thin films. In particular, the invention concerns a method of growing a thin film onto a substrate, in which method the substrate is placed in a reaction chamber and is subjected to surface reactions of a plurality of vapor-phase reactants according to the ALD method. The present invention is based on replacing the mechanical valves conventionally used for regulating the pulsing of the reactants, which valves tend to wear and intrude metallic particles into the process flow, with an improved precursor dosing system. The invention is characterized by choking the reactant flow between the vapour-phase pulses while still allowing a minimum flow of said reactant, and redirecting the reactant at these times to an other destination than the reaction chamber. The redirection is performed with an inactive gas, which is also used for ventilating the reaction chamber between the vapour-phase pulses.Type: ApplicationFiled: April 1, 2003Publication date: December 4, 2003Inventors: Sven Lindfors, Pekka T Soininen
-
Publication number: 20030121469Abstract: A method and apparatus for growing a thin film onto a substrate is disclosed. According to one embodiment, a plurality of substrates, each having a width and a length, are placed in a reaction space and the substrates are subjected to surface reactions of vapor-phase reactants according to the ALD method to form a thin film on the surfaces of the substrates. The reaction space comprises an elongated gas channel having a cross-section with a width greater that the height and which has a length which is at least 2 times greater than the length of one substrate in the direction of the gas flow in the channel, the channel having a folded configuration with at least one approximately 180 degree turn in the direction of the gas flow.Type: ApplicationFiled: October 11, 2002Publication date: July 3, 2003Inventors: Sven Lindfors, Ivo Raaijmakers
-
Patent number: 6572705Abstract: The invention relates to a method and apparatus for growing a thin film onto a substrate, in which method a substrate placed in a reaction space (21) is subjected to alternately repeated surface reactions of at least two vapor-phase reactants for the purpose of forming a thin film. According to the method, said reactants are fed in the form of vapor-phase pulses repeatedly and alternately, each reactant separately from its own source, into said reaction space (21), and said vapor-phase reactants are brought to react with the surface of the substrate for the purpose of forming a solid-state thin film compound on said substrate. According to the invention, the gas volume of said reaction space is evacuated by means of a vacuum pump essentially totally between two successive vapor-phase reactant pulses.Type: GrantFiled: January 14, 2000Date of Patent: June 3, 2003Assignee: ASM America, Inc.Inventors: Tuomo Suntola, Sven Lindfors
-
Publication number: 20030075925Abstract: The invention relates to a source chemical container assembly, comprising a metal container functioning as a vacuum chamber and provided with a removable closure, which removable closure seals against the metal container with a metal seal. In order to facilitate easy recharging of the container assembly, compressive force is applied to the metal seal through a tension chain. In a preferred embodiment of the invention the metal seal and the tension chain are provided along a circumference of said metal container. The assembly can comprise an inner container in which the source chemical is contained.Type: ApplicationFiled: June 28, 2002Publication date: April 24, 2003Inventors: Sven Lindfors, Jan von Zweygbergk, Marko J. Kukkonen
-
Patent number: 6534431Abstract: The invention relates to a process and to an apparatus for preparing a heterogeneous catalyst having at least one catalytically active species bound to the surface of a support material. According to the process, the surface of the support is first pretreated. A catalyst reagent containing the catalytically active species or its precursor is vaporized and the vapor is routed into a reaction chamber where it is brought to interact with the support material. The catalyst reagent not bound to the support is withdrawn from the reaction chamber in gaseous form. If necessary, the species bound to the support is posttreated in order to convert it into a catalytically active form. According to the invention, the amount of catalyst reagent brought into the reaction chamber is at least equal to, preferably in excess of the number of available binding sites on the surface.Type: GrantFiled: June 24, 1997Date of Patent: March 18, 2003Assignee: Fortum Oil and Gas OyInventors: Tuomo Suntola, Eeva-Liisa Lakomaa, Hilkka Knuuttila, Pekka Knuuttila, Outi Krause, Sven Lindfors
-
Patent number: 6506352Abstract: The present invention concerns a method and an apparatus for removing substances from gases discharged from gas phase reactors. In particular, the invention provides a method for removing substances contained in gases discharged from an ALD reaction process, comprising contacting the gases with a “sacrificial” material having a high surface area kept at essentially the same conditions as those prevailing during the gas phase reaction process. The sacrificial material is thus subjected to surface reactions with the substances contained in the gases to form a reaction product on the surface of the sacrificial material and to remove the substances from the gases. The present invention diminishes the amount of waste produced in the gas phase process and reduces wear on the equipment.Type: GrantFiled: July 20, 2000Date of Patent: January 14, 2003Assignee: ASM Microchemistry OyInventors: Sven Lindfors, Jaakko Hyvarinen
-
Publication number: 20020187084Abstract: The present invention concerns a method and an apparatus for removing substances from gases discharged from gas phase reactors. In particular, the invention provides a method for removing substances contained in gases discharged from an ALD reaction process, comprising contacting the gases with a “sacrificial” material having a high surface area kept at essentially the same conditions as those prevailing during the gas phase reaction process. The sacrificial material is thus subjected to surface reactions with the substances contained in the gases to form a reaction product on the surface of the sacrificial material and to remove the substances from the gases. The present invention diminishes the amount of waste produced in the gas phase process and reduces wear on the equipment.Type: ApplicationFiled: July 24, 2002Publication date: December 12, 2002Inventors: Sven Lindfors, Jaakko Hyvarinen
-
Publication number: 20020157611Abstract: The present invention relates to improved methods and apparatus for atomic layer deposition (ALD) of thin films on substrates such as wafers and flat panel displays. The invention provides an ALD reactor comprising a first temperature regulating system to control the temperature of the substrate and a second temperature regulating system to independently control the temperature of the reaction chamber walls. The invention also provides a method for ALD of a film onto a substrate in a reaction chamber, in which the temperature of the substrate is maintained to maximize ALD on the substrate while the temperature of the reaction chamber walls is set to minimize film growth thereon, whether by ALD, condensation, physisorption or thermal decomposition. The temperature of the walls may be maintained at the same temperature as the substrate, or higher or lower than the substrate temperature, depending upon the particular reaction being used.Type: ApplicationFiled: March 7, 2001Publication date: October 31, 2002Inventors: Niklas Bondestam, Sven Lindfors
-
Publication number: 20020108570Abstract: A method and an apparatus for growing a thin film onto a substrate by the ALD process. The apparatus comprises a reaction chamber into which the substrate can be disposed; a plurality of inlet channels communicating with said reaction chamber, said inlet channels being suited for feeding the reactants employed in a thin-film growth process in the form of vapor-phase pulses into said reaction chamber; at least one outlet channel communicating with said reaction chamber, said outlet channel being suited for the outflow of reaction products and excess amounts of reactants from said reaction space; and a pre-reaction chamber arranged immediately upstream of the reaction chamber, said pre-reaction chamber forming a first reaction zone, in which the reactants of successive vapor-phase pulses can be reacted with each other in the vapor phase to form a solid product, whereas said reaction chamber forming a second reaction zone can be operated under conditions conducive to ALD growth of a thin film.Type: ApplicationFiled: April 16, 2001Publication date: August 15, 2002Inventor: Sven Lindfors
-
Publication number: 20020041931Abstract: The invention relates to a method and apparatus for growing a thin film onto a substrate, in which method a substrate placed in a reaction space (21) is subjected to alternately repeated surface reactions of at least two vapor-phase reactants for the purpose of forming a thin film. According to the method, said reactants are fed in the form of vapor-phase pulses repeatedly and alternately, each reactant separately from its own source, into said reaction space (21), and said vapor-phase reactants are brought to react with the surface of the substrate for the purpose of forming a solid-state thin film compound on said substrate. According to the invention, the gas volume of said reaction space is evacuated by means of a vacuum pump essentially totally between two successive vapor-phase reactant pulses.Type: ApplicationFiled: May 14, 2001Publication date: April 11, 2002Inventors: Tuomo Suntola, Sven Lindfors