Patents by Inventor Sven-Matthias Scheibe

Sven-Matthias Scheibe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11187735
    Abstract: An assembly with a secondary coil arranged on a coil carrier for a field device is described, wherein the field device comprises an electronics and an inductive interface connected to the electronics, and wherein the assembly can be used in the field device such that the field device can be connected via its interface to an inductive interface of a superordinate unit such that the secondary coil of the assembly, with a primary coil of the inductive interface of the superordinate unit, form a transformer for transmitting data and/or energy, which makes it possible to reduce the dimensions of field devices equipped with it and also contributes to increased operational safety, in that an assembly circuit formed by the secondary coil and at least one electronic component connected to the secondary coil via lines connected to it and arranged on the coil carrier is arranged on the coil carrier.
    Type: Grant
    Filed: September 4, 2019
    Date of Patent: November 30, 2021
    Assignee: Endress+Hauser Conducta GmbH+Co. KG
    Inventors: Torsten Pechstein, Stefan Paul, Jörg Uhle, Sven-Matthias Scheibe, Thomas Nagel, Christian Fanselow, Alexander Serfling
  • Publication number: 20210341311
    Abstract: Disclosed is a sensor comprising a sensor element that detects a measurand, the sensor element being in electrical contact with a sensor circuit that processes values derived from data from a secondary coil and/or from the measurand. The sensor circuit is in electrical contact with an ex-circuit. The sensor circuit is supplied a maximum input voltage and a maximum input current. The ex-circuit includes the secondary coil that receives an electrical signal from a primary coil. The electrical signal includes the data that are modulated onto the electrical signal. The sensor also includes a voltage limit that limits the voltage of the electrical signal to the maximum input voltage of the sensor circuit and a current limit that limits the current of the electrical signal to the maximum input current of the sensor circuit. Also disclosed are a sensor arrangement and a use of a sensor.
    Type: Application
    Filed: July 30, 2019
    Publication date: November 4, 2021
    Inventors: Sven-Matthias Scheibe, Stefan Pilz
  • Patent number: 11055245
    Abstract: The disclosure relates to a method for communication in process automation between a sensor and a connecting element connectable to the sensor, wherein the sensor is configured for acquisition of a measured variable of the process automation and for transmission of a value that is dependent upon the measured variable value to the connecting element, wherein the connecting element for transmission of the value dependent upon the measured variable to a parent unit is configured via a first protocol. The method is characterized in that communication between the sensor and the connecting element takes place without the knowledge of the parent unit using a second protocol, the second protocol being independent of the first protocol.
    Type: Grant
    Filed: July 15, 2016
    Date of Patent: July 6, 2021
    Assignee: Endress+Hauser Conducta GmbH+Co. KG
    Inventors: Stefan Pilz, Sven-Matthias Scheibe, Tobias Mieth
  • Patent number: 10778033
    Abstract: The present disclosure discloses a connection element comprising an essentially cylindrical core, a primary coil for transmission and reception of data and/or for transmission of energy from or to a secondary coil, wherein the primary coil surrounds the core, and a first coupling body with a first segment and a second segment, wherein the second segment comprises the primary coil. In the connection element, the core at one end comprises a first magnetic body that is greater in diameter than the core and extends into the first segment. The present disclosure likewise discloses a sensor, as well as a sensor connection element including such a sensor and such a connection element.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: September 15, 2020
    Assignee: Endress+Hauser Conducta GmbH+Co. KG
    Inventors: Sebastian Geissler, Stefan Pilz, Sven-Matthias Scheibe
  • Publication number: 20200081046
    Abstract: An assembly with a secondary coil arranged on a coil carrier for a field device is described, wherein the field device comprises an electronics and an inductive interface connected to the electronics, and wherein the assembly can be used in the field device such that the field device can be connected via its interface to an inductive interface of a superordinate unit such that the secondary coil of the assembly, with a primary coil of the inductive interface of the superordinate unit, form a transformer for transmitting data and/or energy, which makes it possible to reduce the dimensions of field devices equipped with it and also contributes to increased operational safety, in that an assembly circuit formed by the secondary coil and at least one electronic component connected to the secondary coil via lines connected to it and arranged on the coil carrier is arranged on the coil carrier.
    Type: Application
    Filed: September 4, 2019
    Publication date: March 12, 2020
    Inventors: Torsten Pechstein, Stefan Paul, Jörg Uhle, Sven-Matthias Scheibe, Thomas Nagel, Christian Fanselow, Alexander Serfling
  • Patent number: 10580570
    Abstract: The distributor module serves for distributing electrical power to at least two connected measuring devices (S1, S2) and for forwarding to at least one superordinated electronic data processing unit (NLU) information concerning at least one physical, measured variable transmitted from the connected at least two measuring devices. For this, the distributor module comprises a module housing (100) as well as an electronics module placed within the module housing (100).
    Type: Grant
    Filed: September 11, 2014
    Date of Patent: March 3, 2020
    Assignee: Endress+Hauser Conducta GmbH+Co. KG
    Inventors: Torsten Pechstein, Sven-Matthias Scheibe
  • Publication number: 20180366983
    Abstract: The present disclosure discloses a connection element comprising an essentially cylindrical core, a primary coil for transmission and reception of data and/or for transmission of energy from or to a secondary coil, wherein the primary coil surrounds the core, and a first coupling body with a first segment and a second segment, wherein the second segment comprises the primary coil. In the connection element, the core at one end comprises a first magnetic body that is greater in diameter than the core and extends into the first segment. The present disclosure likewise discloses a sensor, as well as a sensor connection element including such a sensor and such a connection element.
    Type: Application
    Filed: June 19, 2018
    Publication date: December 20, 2018
    Inventors: Sebastian Geissler, Stefan Pilz, Sven-Matthias Scheibe
  • Patent number: 10158193
    Abstract: A sensor arrangement for use in process automation, including a sensor with at least one sensor element for detecting a measurand of process automation, a first interface for transmitting a value that is a function of the measurand to a second interface, and a first coupling body having the first interface, the sensor further including a connection element for transmitting the value to a higher-level unit, the connection element including a first housing section with a second interface complementary to the first interface, wherein the first and second interfaces are designed for bi-directional communication between the sensor and the higher-level unit and to ensure the power supply to the sensor, a second housing section with a second coupling body complementary to the first coupling body and having an open and a locked condition, wherein the first housing section can be rotated in relation to the second housing section.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: December 18, 2018
    Assignee: Endress + Hauser Conducta GmbH + Co. KG
    Inventor: Sven-Matthias Scheibe
  • Patent number: 10110065
    Abstract: The present disclosure includes an electronic circuit for use in process automation for transferring electrical energy from a terminal element to a sensor over an inductively coupled interface. The sensor measures the power it receives over the inductive interface and compares this value to a target power value. The difference between the actual and target values is communicated back to the terminal element. The terminal element adjusts its power output to the sensor to minimize this difference. The disclosure includes the use of the electronic circuit and a sensor arrangement comprising the electronic circuit, as well as a method for transmitting power.
    Type: Grant
    Filed: August 12, 2016
    Date of Patent: October 23, 2018
    Assignee: Endress+Hauser Conducta GmbH+Co. KG
    Inventor: Sven-Matthias Scheibe
  • Publication number: 20180159268
    Abstract: A sensor arrangement for use in process automation, including a sensor with at least one sensor element for detecting a measurand of process automation, a first interface for transmitting a value that is a function of the measurand to a second interface, and a first coupling body having the first interface, the sensor further including a connection element for transmitting the value to a higher-level unit, the connection element including a first housing section with a second interface complementary to the first interface, wherein the first and second interfaces are designed for bi-directional communication between the sensor and the higher-level unit and to ensure the power supply to the sensor, a second housing section with a second coupling body complementary to the first coupling body and having an open and a locked condition, wherein the first housing section can be rotated in relation to the second housing section.
    Type: Application
    Filed: November 21, 2017
    Publication date: June 7, 2018
    Inventor: Sven-Matthias Scheibe
  • Patent number: 9829354
    Abstract: A sensor arrangement and cable for use in process automation, including a sensor having at least one sensor element for recording a value in process automation, a first interface for transmitting a measured value depending on the measured value to a second interface, the first interface including a first mechanical, and a cable for transmitting the value to a superordinate unit, the cable including said second interface, which is complementary to the first interface, and a second mechanical coupling complementary to the first mechanical coupling, wherein the second interface and mechanical coupling are arranged in a cable housing, wherein the sensor is detachably connectible to the cable by the first mechanical coupling and the second mechanical coupling, characterized in that the second mechanical coupling is arranged at an angle less than 180° to the longitudinal axis of the cable housing.
    Type: Grant
    Filed: November 5, 2015
    Date of Patent: November 28, 2017
    Assignee: Endress+Hauser Conducta GmbH+Co. KG
    Inventor: Sven-Matthias Scheibe
  • Patent number: 9632052
    Abstract: A sensor module includes a sensor element with a transducer for emitting an electric analog primary signal, which depends on a measured value; and a circuit assembly for conditioning the primary signal and for unidirectional data communication of a digital signal, which depends on the primary signal, to a superordinated unit.
    Type: Grant
    Filed: October 27, 2009
    Date of Patent: April 25, 2017
    Assignee: Endress+Hauser Conducta GmbH+Co. KG
    Inventors: Tobias Mieth, Sven-Matthias Scheibe
  • Publication number: 20170047776
    Abstract: The present disclosure includes an electronic circuit for use in process automation for transferring electrical energy from a terminal element to a sensor over an inductively coupled interface. The sensor measures the power it receives over the inductive interface and compares this value to a target power value. The difference between the actual and target values is communicated back to the terminal element. The terminal element adjusts its power output to the sensor to minimize this difference. The disclosure includes the use of the electronic circuit and a sensor arrangement comprising the electronic circuit, as well as a method for transmitting power.
    Type: Application
    Filed: August 12, 2016
    Publication date: February 16, 2017
    Inventor: Sven-Matthias Scheibe
  • Publication number: 20170017599
    Abstract: The disclosure relates to a method for communication in process automation between a sensor and a connecting element connectable to the sensor, wherein the sensor is configured for acquisition of a measured variable of the process automation and for transmission of a value that is dependent upon the measured variable value to the connecting element, wherein the connecting element for transmission of the value dependent upon the measured variable to a parent unit is configured via a first protocol. The method is characterized in that communication between the sensor and the connecting element takes place without the knowledge of the parent unit using a second protocol, the second protocol being independent of the first protocol.
    Type: Application
    Filed: July 15, 2016
    Publication date: January 19, 2017
    Inventors: Stefan Pilz, Sven-Matthias Scheibe, Tobias Mieth
  • Publication number: 20160131506
    Abstract: A sensor arrangement for use in process automation, comprising: a sensor comprising at least one sensor element for recording a measured value in process automation, a first interface for transmitting a measured value depending on the measured value to a second interface, and a first mechanical coupling that comprises the interface; a cable for transmitting the measured value depending on the measured value to a superordinate unit comprising a second interface that is complementary to the first interface. A second mechanical coupling that is complementary to the first mechanical coupling, wherein the second interface and the second mechanical coupling are arranged in a cable housing at least in sections, wherein the sensor is connectible to the cable in a detachable way by means of the first mechanical coupling and the second mechanical coupling, particularly by way of a snap connection.
    Type: Application
    Filed: November 5, 2015
    Publication date: May 12, 2016
    Inventor: Sven-Matthias Scheibe
  • Patent number: 9285247
    Abstract: A cable circuit includes a contactless interface for signal transmission between the cable circuit and the sensor module, wherein the sensor module is galvanically isolated from the cable circuit, and wherein signal transmission between the cable circuit and the sensor module occurs on an optical, inductive or capacitive path. Additionally, the cable circuit includes a signal processing unit, as well as a cable interface for connecting a cable, which connects the cable circuit with the measurement transmitter. The signal processing unit is integrated into the signal path. The signal processing unit is embodied to receive, via the cable interface, signals from the measurement transmitter, to condition them and to transmit them via the contactless interface to the sensor module, and to receive, via the contactless interface, signals from the sensor module, to condition them and to transmit them via the cable interface to the measurement transmitter.
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: March 15, 2016
    Assignee: Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG
    Inventors: Stephen Buschnakowski, Torsten Pechstein, Stefan Robl, Sven-Matthias Scheibe, Tobias Mieth
  • Patent number: 8963635
    Abstract: An apparatus for coding a signal by means of amplitude shift keying comprises a class E amplifier including a switching transistor, to whose gate is supplied a voltage having an operating frequency for operating the class E amplifier. For achieving an amplitude shift keying in the output signal of the class E amplifier, a circuit for switching the operating frequency of the voltage supplied to the gate of the switching transistor, or the resonance frequency of the class E amplifier, between a first value and a second value is provided and in order to switch a deviation degree between the operating frequency and the resonance frequency between a first value and a second value.
    Type: Grant
    Filed: April 24, 2008
    Date of Patent: February 24, 2015
    Assignee: Endress + Hauser Conducta Gesellschaft fur Mess—und Regeltechnik mbH + Co. KG
    Inventor: Sven-Matthias Scheibe
  • Patent number: 8928181
    Abstract: In a method and in an apparatus for transmission of energy and data, with a primary side, on which an amplifier is arranged, with a secondary side, on which a data source, e.g. a measuring sensor, is arranged, and with a plug-together assembly inductively coupling, galvanically completely isolated, the primary side and the secondary side, to minimize power losses and disturbing influences of fluctuating parameters, power from the plug-together assembly and from the amplifier, preferably a Class-E-amplifier, is controlled to a predeterminable, desired value. For this, a microcontroller taps the primary voltage on the primary winding and produces for the amplifier a controlled operating voltage as well as a controlled operating frequency, in order to keep the working point of the amplifier always in the optimal region.
    Type: Grant
    Filed: August 12, 2008
    Date of Patent: January 6, 2015
    Assignee: Endress + Hauser Conducta Gesellschaft fur Mess- und Regeltechnik mbH + Co. KG
    Inventors: Stephan Buschnakowski, Torsten Pechstein, Sven-Matthias Scheibe
  • Patent number: 8639467
    Abstract: A measuring system for determining a value of a physical or chemical, measured variable of a medium, includes: a base unit; at least one relay unit connected with the base unit and a sensor unit connected with the relay unit. The sensor unit includes a circuit having at least one microcontroller, at least a first memory region, and a second memory region. The upload software is embodied, in interaction with the microcontroller, to perform an updating of the basic software with at least one software module provided from the base unit. The relay unit includes a circuit having at least one microcontroller, and at least a first memory region, in which a basic software of the relay unit is stored. The circuit of the relay unit further includes a second memory region, in which an upload software of the relay unit is stored.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: January 28, 2014
    Assignee: Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG
    Inventors: Ronny Michael, Hermann Gunther, Sven-Matthias Scheibe, Hendrik Zeun
  • Patent number: 8463559
    Abstract: Method for operating a measuring point having a base unit and a sensor unit, wherein the latter couples via a pluggable connector coupling with the base unit; the base unit serves for energy supply of the sensor unit, for data exchange with the sensor unit and for communication with a process monitoring installation, wherein the base unit includes: A first element of the pluggable connector coupling; a first microprocessor sensor data conditioning for communication with the process monitoring installation; a first data memory for saving measuring-point-specific data; wherein the sensor unit has a primary sensor and a sensor head; the primary sensor includes a transducer, which outputs a measured variable dependent signal; wherein the sensor head includes: A circuit for conditioning the transducer signals with an A/D converter and a second microprocessor for measurement signal processing, a second data memory for sensor data; a program memory which contains a firmware; and an interface with a second element of
    Type: Grant
    Filed: November 5, 2008
    Date of Patent: June 11, 2013
    Assignee: Endress + Hauser Conducta Gesellschaft für Mess-und Regeltechnik mbH + Co. KG
    Inventors: Martin Lohmann, Ulrich Kaiser, Tobias Mieth, Sven-Matthias Scheibe, Reinhard Weiss, Jochen Betz