Patents by Inventor SVEN UHLENBRUCK

SVEN UHLENBRUCK has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11111576
    Abstract: According to a method for producing a nanostructured electrode for an electrochemical cell, in which active material is applied to an electrically conductive substrate, the active material is deposited on the electrically conductive substrate by magnetron sputtering in one process step, a ceramic target comprising an electrode material having an additional carbon proportion between 0.1 and 25% by weight is used, the substrate being kept at temperatures between 400° C. and 1200° C. during the deposition, in such a way that a fibrous porous network is formed.
    Type: Grant
    Filed: April 27, 2016
    Date of Patent: September 7, 2021
    Assignee: Forschungszentrum Juelich GmbH
    Inventors: Aiko Buenting, Sven Uhlenbruck
  • Patent number: 10763549
    Abstract: A method for producing at least one electrochemical cell of a solid-state battery, comprising a mixed-conducting anode, a mixed-conducting cathode, and an interposed electrolyte, is characterized in that a mixed-conducting anode and a mixed-conducting cathode are initially produced or provided. The surface of at least one of the two electrodes is modified by way of an additional method step in such a way that the electronic conductivity perpendicular to the cell is reduced to less than 10?8 S/cm in a layer of the electrode near the surface. The anode and cathode are then assembled to form a solid-state battery in such a way that the surface-modified layer of at least one electrode is disposed as an electrolyte layer between the anode and cathode, and the mixed-conducting electrodes are thereby electronically separated.
    Type: Grant
    Filed: September 5, 2014
    Date of Patent: September 1, 2020
    Assignee: FORSCHUNGZENTRUM JUELICH GMBH
    Inventors: Martin Finsterbusch, Chih-Long Tsai, Sven Uhlenbruck, Hans Peter Buchkremer
  • Patent number: 10403881
    Abstract: A method for producing a ceramic cathode layer on an electrically conductive substrate includes applying a coating to the electrically conductive substrate, the coating being in a form of a suspension including at least one suspending agent and at least one ceramic material. The method further includes heating the coating in a reducing atmosphere such that the ceramic material is completely or in part reduced to a fusible reaction product, heating the coating in a reducing atmosphere to temperatures above the melting point of the reaction product so as to form a melt, densifying or sintering the coating in a reducing atmosphere at temperatures that are 100° C. greater than a melting temperature of the reaction product, and reoxidizing the densified or sintered coating in an oxidizing atmosphere in a temperature range of between 400° C. and 1,200° C.
    Type: Grant
    Filed: December 9, 2016
    Date of Patent: September 3, 2019
    Assignee: FORSCHUNGSZENTRUM JUELICH GMBH
    Inventors: Juergen Dornseiffer, Hans-Gregor Gehrke, Manuel Krott, Olivier Guillon, Sven Uhlenbruck
  • Patent number: 10312540
    Abstract: A cathode-electrolyte-anode unit for an electrochemical functional device, in particular a high-temperature fuel cell. The unit has a multi-layer solid-state electrolyte arranged between a porous anode and a porous cathode. The solid-state electrolyte is produced by a vapor deposition process and has a sandwich-type structure consisting of at least one first layer with a lower oxygen content, and at least one second layer with a higher oxygen content. The individual layers have substantially the same composition, with the exception of oxygen.
    Type: Grant
    Filed: May 20, 2014
    Date of Patent: June 4, 2019
    Assignees: Plansee Composite Materials GmbH, Forschungszentrum Juelich GmbH, Fraunhofer Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Markus Haydn, Matthias Ruettinger, Thomas Franco, Sven Uhlenbruck, Thomas Jung, Kai Ortner
  • Patent number: 10230141
    Abstract: A rechargeable energy storage device according to the invention is based on a metal-air battery, in which a gas electrode is used and an ion-conducting or proton-conducting membrane is used as the electrolyte. In contrast to the known metal-air batteries, the active component on the side of the electrolyte membrane opposite the gas electrode is present in the form of a liquid medium in the energy storage device according to the invention. The liquid-medium/gas battery according to the invention comprises a receptacle, which includes a medium in liquid form as the active material at the operating temperature of the battery.
    Type: Grant
    Filed: February 3, 2015
    Date of Patent: March 12, 2019
    Assignee: FORSCHUNGSZENTRUM JUELICH GMBH
    Inventors: Sven Uhlenbruck, Martin Finsterbusch, Eva Maria Hammer, Hans Peter Buchkremer
  • Publication number: 20190013512
    Abstract: A method for producing a ceramic cathode layer on an electrically conductive substrate includes applying a coating to the electrically conductive substrate, the coating being in a form of a suspension including at least one suspending agent and at least one ceramic material. The method further includes heating the coating in a reducing atmosphere such that the ceramic material is completely or in part reduced to a fusible reaction product, heating the coating in a reducing atmosphere to temperatures above the melting point of the reaction product so as to form a melt, densifying or sintering the coating in a reducing atmosphere at temperatures that are 100° C. greater than a melting temperature of the reaction product, and reoxidizing the densified or sintered coating in an oxidizing atmosphere in a temperature range of between 400° C. and 1,200° C.
    Type: Application
    Filed: December 9, 2016
    Publication date: January 10, 2019
    Applicant: Forschungszentrum Juelich GmbH
    Inventors: Juergen Dornseiffer, Hans-Gregor Gehrke, Manuel Krott, Olivier Guillon, Sven Uhlenbruck
  • Publication number: 20180163293
    Abstract: According to a method for producing a nanostructured electrode for an electrochemical cell, in which active material is applied to an electrically conductive substrate, the active material is deposited on the electrically conductive substrate by magnetron sputtering in one process step, a ceramic target comprising an electrode material having an additional carbon proportion between 0.1 and 25% by weight is used, the substrate being kept at temperatures between 400° C. and 1200° C. during the deposition, in such a way that a fibrous porous network is formed.
    Type: Application
    Filed: April 27, 2016
    Publication date: June 14, 2018
    Inventors: Aiko Buenting, Sven Uhlenbruck
  • Publication number: 20170263980
    Abstract: A method for producing at least one electrochemical cell of a solid-state battery, comprising a mixed-conducting anode, a mixed-conducting cathode, and an interposed electrolyte, is characterized in that a mixed-conducting anode and a mixed-conducting cathode are initially produced or provided. The surface of at least one of the two electrodes is modified by way of an additional method step in such a way that the electronic conductivity perpendicular to the cell is reduced to less than 10?8 S/cm in a layer of the electrode near the surface. The anode and cathode are then assembled to form a solid-state battery in such a way that the surface-modified layer of at least one electrode is disposed as an electrolyte layer between the anode and cathode, and the mixed-conducting electrodes are thereby electronically separated.
    Type: Application
    Filed: September 5, 2014
    Publication date: September 14, 2017
    Inventors: Martin FINSTERBUSCH, Chih-Long TSAI, Sven UHLENBRUCK, Hans Peter BUCHKREMER
  • Publication number: 20160365614
    Abstract: A rechargeable energy storage device according to the invention is based on a metal-air battery, in which a gas electrode is used and an ion-conducting or proton-conducting membrane is used as the electrolyte. In contrast to the known metal-air batteries, the active component on the side of the electrolyte membrane opposite the gas electrode is present in the form of a liquid medium in the energy storage device according to the invention. The liquid-medium/gas battery according to the invention comprises a receptacle, which includes a medium in liquid form as the active material at the operating temperature of the battery.
    Type: Application
    Filed: February 3, 2015
    Publication date: December 15, 2016
    Inventors: Sven UHLENBRUCK, Martin FINSTERBUSCH, Eva Maria HAMMER, Hans Peter BUCHKREMER
  • Publication number: 20160118680
    Abstract: A cathode-electrolyte-anode unit for an electrochemical functional device, in particular a high-temperature fuel cell. The unit has a multi-layer solid-state electrolyte arranged between a porous anode and a porous cathode. The solid-state electrolyte is produced by a vapor deposition process and has a sandwich-type structure consisting of at least one first layer with a lower oxygen content, and at least one second layer with a higher oxygen content. The individual layers have substantially the same composition, with the exception of oxygen.
    Type: Application
    Filed: May 20, 2014
    Publication date: April 28, 2016
    Inventors: MARKUS HAYDN, MATTHIAS RUETTINGER, THOMAS FRANCO, SVEN UHLENBRUCK, THOMAS JUNG, KAI ORTNER