Patents by Inventor Sven Vogler

Sven Vogler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240142931
    Abstract: A door system for at least one door, the door system including door components, with one of the components being designed as a control unit. The control unit and at least one other door component are connected to one another via a first communication bus. An access system with an above door system and with a computing unit are related, with an image of the door system stored in the computing unit, the door components connected to the first communication bus each having an identifier. The identifiers are stored as part of the image of the door system in the computing unit and/or with past and current operating states of the door system stored in the computing unit. An access system with at least one of the above door systems is related, with at least one door system having an authentication device configured to receive an access attribute for authentication.
    Type: Application
    Filed: February 23, 2022
    Publication date: May 2, 2024
    Inventors: Stephan GIERNICH, Dennis MEIERING, Thomas VOGLER, Sven BUSCH, Ingo HALDER, Bernd GEHRMANN, Andrzej DUDZINSKI, Chandra Prakash GUPTA, Oliver BORCHMANN, Frank LORENZ
  • Publication number: 20240137270
    Abstract: A method for commissioning a door system with the door system having door components, with at least one door component being designed as a control unit, with the method including the following steps: storing an electronic configuration of the door system in the control unit and/or a mobile terminal, and carrying out at least one commissioning step by the electronic configuration.
    Type: Application
    Filed: August 18, 2021
    Publication date: April 25, 2024
    Inventors: Kai OBERSTE-UFER, Christian RAPPEL, Thomas VOGLER, Sven BUSCH, Ingo HALDER, Bernd GEHRMANN, Andrzej DUDZINSKI, Chandra Prakash GUPTA, Oliver BORCHMANN, Frank LORENZ, Martin WOLF, Alexander BRADFISCH, Stephan GIERNICH, Pedro GUERRA
  • Publication number: 20240127653
    Abstract: A method for installing door components includes at least the following steps: a. providing at least one preconfigured door system type by way of an electronic configuration system for selection by a user, wherein the at least one preconfigured door system type is able to be retrieved from a database by way of the electronic configuration system, wherein at least one preconfigured door system type is able to be preselected by the configuration system by way of at least one technical and/or functional user specification, wherein the door system type contains stipulated door component types, and b. electronically providing preconfigured technical data of the selected door system type in order to carry out the installation on site.
    Type: Application
    Filed: February 23, 2022
    Publication date: April 18, 2024
    Inventors: Kai OBERSTE-UFER, Daniel FISCHER, Thomas VOGLER, Sven BUSCH, Ingo HALDER, Bernd GEHRMANN, Andrzej DUDZINSKI, Chandra Prakash GUPTA, Oliver BORCHMANN, Frank LORENZ, Jürg SIMON
  • Patent number: 7487069
    Abstract: A method for optically detecting the position of a moveable test object (10), especially a mirror or reflector, in which a measuring beam (6) produced by a light source (2) is reflected by the test object (10 and reaches a position-sensitive light detector (12) which carrier out a conversion into information corresponding to the position of the test object (10). The invention enables the position of mirrors, especially rotating mirrors, to be quickly measured optically using a simple optical construction. The measuring beam (6) is focused onto the light detector (12) by an optical system (8). A signal corresponding to the geometric center or the maximum (I0) of the intensity distribution of the focused measuring spot is determined based on the measured values obtained by the light detector (12).
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: February 3, 2009
    Assignee: Heidelberg Instruments Mikrotechnik GmbH
    Inventors: Sven Vogler, Roland Kaplan, Robert Weikert, Roelof Wijnaendts-Van-Resandt
  • Publication number: 20080021671
    Abstract: A method for optically detecting the position of a moveable test object (10), especially a mirror or reflector, in which a measuring beam (6) produced by a light source (2) is reflected by the test object (10 and reaches a position-sensitive light detector (12) which carrier out a conversion into information corresponding to the position of the test object (10). The invention enables the position of mirrors, especially rotating mirrors, to be quickly measured optically using a simple optical construction. The measuring beam (6) is focused onto the light detector (12) by an optical system (8). A signal corresponding to the geometric center or the maximum (I0) of the intensity distribution of the focused measuring spot is determined based on the measured values obtained by the light detector (12).
    Type: Application
    Filed: September 27, 2007
    Publication date: January 24, 2008
    Applicant: HEIDELBERG INSTRUMENTS MIKROTECHNIK GmbH
    Inventors: Sven VOGLER, Roland Kaplan, Robert Weikert, Roelof Wijnaendts-Van-Resandt
  • Publication number: 20070021939
    Abstract: A method for optically detecting the position of a moveable test object (10), especially a mirror or reflector, in which a measuring beam (6) produced by a light source (2) is reflected by the test object (10 and reaches a position-sensitive light detector (12) which carrier out a conversion into information corresponding to the position of the test object (10). The invention enables the position of mirrors, especially rotating mirrors, to be quickly measured optically using a simple optical construction. The measuring beam (6) is focussed onto the light detector (12) by an optical system (8). A signal corresponding to the geometric center or the maximum (I0) of the intensity distribution of the focussed measuring spot is determined based on the measured values obtained by the light detector (12).
    Type: Application
    Filed: September 28, 2006
    Publication date: January 25, 2007
    Applicant: HEIDELBERG INSTRUMENTS MIKROTECHNIK GmbH
    Inventors: Sven Vogler, Roland Kaplan, Robert Weikert, Roelof Wijnaendts-Van-Resandt
  • Publication number: 20060106552
    Abstract: A method for optically detecting the position of a moveable test object (10), especially a mirror or reflector, in which a measuring beam (6) produced by a light source (2) is reflected by the test object (10 and reaches a position-sensitive light detector (12) which carrier out a conversion into information corresponding to the position of the test object (10). The invention enables the position of mirrors, especially rotating mirrors, to be quickly measured optically using a simple optical construction. The measuring beam (6) is focussed onto the light detector (12) by an optical system (8). A signal corresponding to the geometric center or the maximum (I0) of the intensity distribution of the focussed measuring spot is determined based on the measured values obtained by the light detector (12).
    Type: Application
    Filed: December 22, 2005
    Publication date: May 18, 2006
    Applicant: HEIDELBERG INSTRUMENTS MIKROTECHNIK GmbH
    Inventors: Sven Vogler, Roland Kaplan, Robert Weikert, Roelof Wijnaendts-Van-Resandt
  • Publication number: 20050171725
    Abstract: A method for optically detecting the position of a moveable test object (10), especially a mirror or reflector, in which a measuring beam (6) produced by a light source (2) is reflected by the test object (10 and reaches a position-sensitive light detector (12) which carrier out a conversion into information corresponding to the position of the test object (10). The invention enables the position of mirrors, especially rotating mirrors, to be quickly measured optically using a simple optical construction. The measuring beam (6) is focussed onto the light detector (12) by an optical system (8). A signal corresponding to the geometric center or the maximum (I0) of the intensity distribution of the focussed measuring spot is determined based on the measured values obtained by the light detector (12).
    Type: Application
    Filed: March 28, 2005
    Publication date: August 4, 2005
    Applicant: Heidelberg Instruments Mikrotechnik GmbH
    Inventors: Sven Vogler, Roland Kaplan, Robert Weikert, Roelof Wijnaendts-Van-Resandt
  • Publication number: 20040024563
    Abstract: A method for optically detecting the position of a moveable test object (10), especially a mirror or reflector, in which a measuring beam (6) produced by a light source (2) is reflected by the test object (10 and reaches a position-sensitive light detector (12) which carrier out a conversion into information corresponding to the position of the test object (10). The invention enables the position of mirrors, especially rotating mirrors, to be quickly measured optically using a simple optical construction. The measuring beam (6) is focussed onto the light detector (12) by an optical system (8). A signal corresponding to the geometric center or the maximum (10) of the intensity distribution of the focussed measuring spot is determined based on the measured values obtained by the light detector (12).
    Type: Application
    Filed: July 29, 2003
    Publication date: February 5, 2004
    Applicant: Heidelberg Instruments Mikrotechnik GmbH
    Inventors: Sven Vogler, Roland Kaplan, Robert Weikert, Roelof Wijnaendts-Van-Resandt
  • Patent number: 6639179
    Abstract: A method of producing microbore holes in a multi-layer substrate (5), preferably a printed circuit board substrate, that is displaced below writing optics (4) by an XY stage (6), using the optics to generate a spot from a light source (1), preferably a laser. The method reduces the treatment time and preferably compensates for distortions in the substrate material. To this end, the position of the spot within a working field is changed simultaneously with the treatment positions by electronically controlled, movable mirrors. The position of the substrate is determined by an interferometer (9, 11), and the signals corresponding to the substrate position are processed by a suitable computer system (16) to obtain an actual position of the table system. The computer system (16) is preferably provided with all bore hole coordinates and additional information such as bore hole diameter, especially in tabular form.
    Type: Grant
    Filed: January 23, 2002
    Date of Patent: October 28, 2003
    Assignee: Heidelberg Instruments Mikrotechnik GmbH
    Inventors: Sven Vogler, Roland Kaplan
  • Publication number: 20030033112
    Abstract: A method for optically detecting the position of a moveable test object (10), especially a mirror or reflector, in which a measuring beam (6) produced by a light source (2) is reflected by the test object (10 and reaches a position-sensitive light detector (12) which carrier out a conversion into information corresponding to the position of the test object (10). The invention enables the position of mirrors, especially rotating mirrors, to be quickly measured optically using a simple optical construction. The measuring beam (6) is focussed onto the light detector (12) by an optical system (8). A signal corresponding to the geometric center or the maximum (I0) of the intensity distribution of the focussed measuring spot is determined based on the measured values obtained by the light detector (12).
    Type: Application
    Filed: July 19, 2002
    Publication date: February 13, 2003
    Applicant: Heidelberg Instruments Mikrotechnik GmbH
    Inventors: Sven Vogler, Roland Kaplan, Robert Weikert, Roelof Wijnaendts-Van-Resandt
  • Publication number: 20020121507
    Abstract: A method of producing microbore holes in a multi-layer substrate (5), preferably a printed circuit board substrate, that is displaced below writing optics (4) by an XY stage (6), using the optics to generate a spot from a light source (1), preferably a laser. The method reduces the treatment time and preferably compensates for distortions in the substrate material. To this end, the position of the spot within a working field is changed simultaneously with the treatment positions by electronically controlled, movable mirrors. The position of the substrate is determined by an interferometer (9, 11), and the signals corresponding to the substrate position are processed by a suitable computer system (16) to obtain an actual position of the table system. The computer system (16) is preferably provided with all bore hole coordinates and additional information such as bore hole diameter, especially in tabular form.
    Type: Application
    Filed: January 23, 2002
    Publication date: September 5, 2002
    Inventors: Sven Vogler, Roland Kaplan