Patents by Inventor Svetlana Selezneva

Svetlana Selezneva has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11280270
    Abstract: A combustor for a gas turbine system includes a combustor casing having an interior-establishing wall, and a chamber extending to the interior-establishing wall. In addition, the combustor includes an igniter assembly disposed within the chamber such that a tip of the igniter assembly is positioned radially outwardly from the interior-establishing wall. The igniter assembly includes a first electrode, a second electrode, and an insulator. In addition, the first electrode, the second electrode, and the insulator form a cavity, the second electrode forms an outlet passage extending from the cavity, a maximum cross-sectional area of the cavity is greater than a minimum cross-sectional area of the outlet passage, and the first electrode and the second electrode are configured to ionize gas within the cavity in response to an electrical current applied to the first electrode or to the second electrode.
    Type: Grant
    Filed: October 23, 2020
    Date of Patent: March 22, 2022
    Assignee: General Electric Company
    Inventors: Badri Narayan Ramamurthi, Svetlana Selezneva, Mohamed Rahmane, Andrey Meshkov, Karim Younsi, Mark Wayne McWaters, Philip Nose Alberti
  • Publication number: 20210040890
    Abstract: A combustor for a gas turbine system includes a combustor casing having an interior-establishing wall, and a chamber extending to the interior-establishing wall. In addition, the combustor includes an igniter assembly disposed within the chamber such that a tip of the igniter assembly is positioned radially outwardly from the interior-establishing wall. The igniter assembly includes a first electrode, a second electrode, and an insulator. In addition, the first electrode, the second electrode, and the insulator form a cavity, the second electrode forms an outlet passage extending from the cavity, a maximum cross-sectional area of the cavity is greater than a minimum cross-sectional area of the outlet passage, and the first electrode and the second electrode are configured to ionize gas within the cavity in response to an electrical current applied to the first electrode or to the second electrode.
    Type: Application
    Filed: October 23, 2020
    Publication date: February 11, 2021
    Inventors: Badri Narayan Ramamurthi, Svetlana Selezneva, Mohamed Rahmane, Andrey Meshkov, Karim Younsi, Mark Wayne McWaters, Philip Nose Alberti
  • Patent number: 10837369
    Abstract: An igniter assembly for a gas turbine combustor includes a first electrode, a second electrode, and an insulator. The first electrode, the second electrode, and the insulator form a cavity, the second electrode forms an outlet passage extending from the cavity, a maximum cross-sectional area of the cavity is greater than a cross-sectional area of the outlet passage, and the cross-sectional area of the outlet passage is substantially constant along a longitudinal extent of the outlet passage. In addition, the first electrode and the second electrode are configured to ionize gas within the cavity in response to an electrical current applied to the first electrode or to the second electrode.
    Type: Grant
    Filed: August 23, 2017
    Date of Patent: November 17, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Badri Narayan Ramamurthi, Svetlana Selezneva, Mohamed Rahmane, Andrey Meshkov, Karim Younsi, Mark Wayne McWaters, Philip Nose Alberti
  • Publication number: 20190295801
    Abstract: A gas switch includes a gas-tight housing containing an ionizable gas, an anode disposed within the gas-tight housing, and a cathode disposed within the gas-tight housing, where the cathode includes a conduction surface. The gas switch also includes a control grid positioned between the anode and the cathode, where the control grid is arranged to receive a bias voltage to establish a conducting plasma between the anode and the cathode. In addition, the gas switch includes a plurality of magnets selectively arranged to generate a magnetic field proximate the conduction surface that reduces the kinetic energy of charged particles striking the conduction surface and raises the conduction current density at the cathode surface to technically useful levels.
    Type: Application
    Filed: March 23, 2018
    Publication date: September 26, 2019
    Inventors: Timothy John Sommerer, Svetlana Selezneva
  • Patent number: 10403466
    Abstract: A gas switch includes a gas-tight housing containing an ionizable gas, an anode disposed within the gas-tight housing, and a cathode disposed within the gas-tight housing, where the cathode includes a conduction surface. The gas switch also includes a control grid positioned between the anode and the cathode, where the control grid is arranged to receive a bias voltage to establish a conducting plasma between the anode and the cathode. In addition, the gas switch includes a plurality of magnets selectively arranged to generate a magnetic field proximate the conduction surface that reduces the kinetic energy of charged particles striking the conduction surface and raises the conduction current density at the cathode surface to technically useful levels.
    Type: Grant
    Filed: March 23, 2018
    Date of Patent: September 3, 2019
    Assignee: General Electric Company
    Inventors: Timothy John Sommerer, Svetlana Selezneva
  • Publication number: 20190063329
    Abstract: An igniter assembly for a gas turbine combustor includes a first electrode, a second electrode, and an insulator. The first electrode, the second electrode, and the insulator form a cavity, the second electrode forms an outlet passage extending from the cavity, a maximum cross-sectional area of the cavity is greater than a cross-sectional area of the outlet passage, and the cross-sectional area of the outlet passage is substantially constant along a longitudinal extent of the outlet passage. In addition, the first electrode and the second electrode are configured to ionize gas within the cavity in response to an electrical current applied to the first electrode or to the second electrode.
    Type: Application
    Filed: August 23, 2017
    Publication date: February 28, 2019
    Inventors: Badri Narayan Ramamurthi, Svetlana Selezneva, Mohamed Rahmane, Andrey Meshkov, Karim Younsi, Mark Wayne McWaters, Philip Nose Alberti
  • Patent number: 9130249
    Abstract: The battery cell design includes a battery cell component comprises a current conducting element, that includes at least a portion that is hollow, further component is configured to be located within a battery cell. Another embodiment of the component comprises a first element that defines a first fluid path therein; and a second element that defines a second fluid path, wherein the two fluid paths are in communication with each other, further wherein the battery cell component is configured to conduct electric current. A battery cell and battery cell assembly that uses the component, and a method of cooling a battery assembly is also disclosed. The present invention has been described in terms of specific embodiment(s), and it is recognized that equivalents, alternatives, and modifications, aside from those expressly stated, are possible and within the scope of the appending claims.
    Type: Grant
    Filed: February 14, 2013
    Date of Patent: September 8, 2015
    Assignee: General Electric Company
    Inventors: Badri Narayan Ramamurthi, Satoshi Atsuchi, Andrey I Meshkov, Mohamed Rahmane, Svetlana Selezneva
  • Patent number: 9028998
    Abstract: The battery cell design includes a battery cell component comprises a current conducting element, that includes at least a portion that is hollow, further component is configured to be located within a battery cell. Another embodiment of the component comprises a first element that defines a first fluid path therein; and a second element that defines a second fluid path, wherein the two fluid paths are in communication with each other, further wherein the battery cell component is configured to conduct electric current. A battery cell and battery cell assembly that uses the component, and a method of cooling a battery assembly is also disclosed. The present invention has been described in terms of specific embodiment(s), and it is recognized that equivalents, alternatives, and modifications, aside from those expressly stated, are possible and within the scope of the appending claims.
    Type: Grant
    Filed: February 14, 2013
    Date of Patent: May 12, 2015
    Assignee: General Electric Company
    Inventors: Badri Narayan Ramamurthi, Satoshi Atsuchi, Andrey I. Meshkov, Mohamed Rahmane, Svetlana Selezneva
  • Patent number: 8747963
    Abstract: An apparatus and methods for forming a diamond film, are provided. An example of an apparatus for forming a diamond film includes an electrodeless microwave plasma reactor having a microwave plasma chamber configured to contain a substrate and to contain a reactant gas excited by microwaves to generate a microwave plasma discharge. Gas injection ports extend through an outer wall of the plasma chamber at a location upstream of the plasma discharge and above the substrate. Gas jet injection nozzles interface with the gas injection ports and are configured to form a directed gas stream of reactant gas having sufficient kinetic energy to disturb a boundary layer above an operational surface of the substrate to establish a convective transfer of the film material to the operational surface of the substrate.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: June 10, 2014
    Assignee: Lockheed Martin Corporation
    Inventors: Mark Phillip D'Evelyn, John Dewey Blouch, Ludwig Christian Haber, Hongying Peng, David Dils, Svetlana Selezneva, Kristi Jean Narang
  • Publication number: 20120301768
    Abstract: The battery cell design includes a battery cell component comprises a current conducting element, that includes at least a portion that is hollow, further component is configured to be located within a battery cell. Another embodiment of the component comprises a first element that defines a first fluid path therein; and a second element that defines a second fluid path, wherein the two fluid paths are in communication with each other, further wherein the battery cell component is configured to conduct electric current. A battery cell and battery cell assembly that uses the component, and a method of cooling a battery assembly is also disclosed. The present invention has been described in terms of specific embodiment(s), and it is recognized that equivalents, alternatives, and modifications, aside from those expressly stated, are possible and within the scope of the appending claims.
    Type: Application
    Filed: May 27, 2011
    Publication date: November 29, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Badri Narayan Ramamurthi, Satoshi Atsuchi, Andrey Meshkov, Mohamed Rahmane, Svetlana Selezneva
  • Patent number: 8299709
    Abstract: A lamp is provided with an axially and radially graded structure to reduce the possibility of thermal stresses, cracks, and other defects in the lamp. In one embodiment, a system includes a ceramic lamp having a ceramic arc envelope and an end structure coupled to the ceramic arc envelope, wherein the end structure is graded both axially and radially into a plurality of regions. In another embodiment, a system includes a lamp having a layered end structure with a plurality of layers disposed one over another and that extend in both axial and radial directions relative to an axis of the lamp, wherein the plurality of layers include different materials having different coefficients of thermal expansion, Poisson's ratios, or elastic moduli, or a combination thereof.
    Type: Grant
    Filed: February 5, 2007
    Date of Patent: October 30, 2012
    Assignee: General Electric Company
    Inventors: Bernard Patrick Bewlay, Dennis Joseph Dalpe, Bruce Alan Knudsen, Mohamed Rahmane, Svetlana Selezneva, James Scott Vartuli, James Anthony Brewer
  • Patent number: 8049425
    Abstract: A lamp is provided having an arctube having a light-transmitting envelope. The arctube is surrounded by a gaseous medium confined by a containment envelope such as a hermetic shroud. The gaseous medium is preferably He or H2 or Ne or another gas whose thermal conductivity is greater than that of N2 at 800° C., or a mixture thereof, to help cool the arctube. The inside and/or outside of the shroud may be coated with a diffusion barrier. To help cool the hot spot of the arctube the gap between the shroud and the envelope can be made small, the portion of the shroud wall near the arc can be thickened, the arctube can be offset above the longitudinal axis of the shroud, and the return lead of the arctube can be located between the shroud and the arctube.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: November 1, 2011
    Assignee: General Electric Company
    Inventors: Gary Robert Allen, David C. Dudik, Viktor K. Varga, Robert Baranyi, Agoston Boroczki, Elizabeth A. Guzowski, Jianwu Li, Rocco T. Giordano, Svetlana Selezneva, Amol S. Mulay
  • Patent number: 8035304
    Abstract: A high intensity discharge lamp, in certain embodiments, includes a uniquely shaped shoulder and dimensions selected to reduce stress and associated cracking. The uniquely shaped shoulder has a variable diameter, such as, e.g., a cup-shaped geometry, a curved funnel-shaped geometry, or a conical-shaped geometry. The selected or optimized dimensions may include a tip-to-neck distance, a tip-to-wall distance, and an internal diameter of the lamp. The selected or optimized dimensions also may include a uniform wall thickness, an arc gap distance, and an electrode thickness. These dimensions and shapes are selected to reduce undesirably high maximum stresses and temperatures in the lamp. As a result, the lamp is able to provide higher performance with a longer life due to a decreased risk of stress cracking during rapid start up and steady state operation.
    Type: Grant
    Filed: March 6, 2008
    Date of Patent: October 11, 2011
    Assignee: General Electric Company
    Inventors: Svetlana Selezneva, Mohamed Rahmane, Sairam Sundaram, Andrey Meshkov, Garry R. Allen, Viktor Varga, Agoston Boroczki
  • Patent number: 7901110
    Abstract: A gas discharge lamp includes an arc envelope and a cooling device. Cooling passage is provided between the arc envelope and the cooling device. An airflow blocking structure is mounted rotatably to the arc envelope. The airflow blocking structure blocks airflow between the cooling device and the arc envelope except for a portion of the passage directed towards a top side of the arc envelope.
    Type: Grant
    Filed: April 12, 2005
    Date of Patent: March 8, 2011
    Assignee: General Electric Company
    Inventors: Amol Suresh Mulay, Viktor Karoly Varga, Gary Robert Allen, Sairam Sundaram, Svetlana Selezneva, Vijaykumar Mallappa Kannure, Rocco Thomas Giordano
  • Patent number: 7884550
    Abstract: A transparent sintered yttrium aluminum garnet ceramic material formed from a solid-state reaction of a mixture of yttrium oxide powder and aluminum oxide powder during sintering. The ceramic material preferably has an in-line transmission of greater than 75% so it may used to fabricate arc tubes for high intensity discharge lamps used in automotive headlamps.
    Type: Grant
    Filed: November 7, 2006
    Date of Patent: February 8, 2011
    Assignee: General Electric Company
    Inventors: Gregory M. Gratson, James A. Brewer, Venkat S. Venkataramani, Mohamed Rahmane, Svetlana Selezneva, Sairam Sundaram
  • Patent number: 7786673
    Abstract: A lamp is provided having an arctube having a light-transmitting envelope. The arctube is surrounded by a gaseous medium confined by a containment envelope such as a hermetic shroud. The gaseous medium is preferably He or H2 or Ne or another gas whose thermal conductivity is greater than that of N2 at 800° C., or a mixture thereof, to help cool the arctube. The inside and/or outside of the shroud may be coated with a diffusion barrier. To help cool the hot spot of the arctube the gap between the shroud and the envelope can be made small, the portion of the shroud wall near the arc can be thickened, the arctube can be offset above the longitudinal axis of the shroud, and the return lead of the arctube can be located between the shroud and the arctube.
    Type: Grant
    Filed: February 28, 2006
    Date of Patent: August 31, 2010
    Assignee: General Electric Company
    Inventors: Gary Robert Allen, David C. Dudik, Viktor K. Varga, Robert Baranyi, Agoston Boroczki, Elizabeth A. Guzowski, Jianwu Li, Rocco T. Giordano, Svetlana Selezneva, Amol S. Mulay
  • Publication number: 20100189924
    Abstract: An apparatus and methods for forming a diamond film, are provided. An example of an apparatus for forming a diamond film includes an electrodeless microwave plasma reactor having a microwave plasma chamber configured to contain a substrate and to contain a reactant gas excited by microwaves to generate a microwave plasma discharge. Gas injection ports extend through an outer wall of the plasma chamber at a location upstream of the plasma discharge and above the substrate. Gas jet injection nozzles interface with the gas injection ports and are configured to form a directed gas stream of reactant gas having sufficient kinetic energy to disturb a boundary layer above an operational surface of the substrate to establish a convective transfer of the film material to the operational surface of the substrate.
    Type: Application
    Filed: January 23, 2009
    Publication date: July 29, 2010
    Applicant: LOCKHEED MARTIN CORPORATION
    Inventors: Mark Philip D'Evelyn, John Dewey Blouch, Ludwig Christian Haber, Hongying Peng, David Dils, Svetlana Selezneva, Kristi Jean Narang
  • Patent number: 7741791
    Abstract: A system for providing a controllable current to a high intensity discharge lamp is provided. The system includes a current controller that is configured to receive input power and to provide an output current waveform to the high intensity discharge lamp. This current causes a discharge of light from the lamp. The output current waveform includes an absolute value amplitude in each half cycle that is generally constant during a first portion and that which increases non-linearly from the generally constant amplitude to a peak amplitude during a second portion.
    Type: Grant
    Filed: June 15, 2007
    Date of Patent: June 22, 2010
    Assignee: General Electric Company
    Inventors: Mohamed Rahmane, Eric Croquesel, Svetlana Selezneva
  • Publication number: 20100109529
    Abstract: An oblate spheroidal arctube body geometry provides for a significant reduction in stress cracks and results in lamps that operate at greater than 400 watts for extended periods of time leading up to greater than 20,000 hours. Preferably, the major diameter (OD) ranges between approximately 20 and 40 mm. Wall thickness (T) is preferably on the order of approximately 1.0 to 3.0 mm. An aspect ratio defined as AR (major axial dimension/minor axial dimension) is preferably between 1.1 and 2.0. A radius of curvature (R1) between the spheroidal portion and the leg of the arctube body preferably ranges from—approximately 3 mm to 12 mm or which can be expressed as a curvature 1/R1 ranging from 0.08 to 0.33 mm?1.
    Type: Application
    Filed: October 30, 2009
    Publication date: May 6, 2010
    Inventors: Gary Robert Allen, David C. Dudik, Svetlana Selezneva, Joshua Ian Rintamaki
  • Publication number: 20100019642
    Abstract: A lamp is provided having an arctube having a light-transmitting envelope. The arctube is surrounded by a gaseous medium confined by a containment envelope such as a hermetic shroud. The gaseous medium is preferably He or H2 or Ne or another gas whose thermal conductivity is greater than that of N2 at 800° C., or a mixture thereof, to help cool the arctube. The inside and/or outside of the shroud may be coated with a diffusion barrier. To help cool the hot spot of the arctube the gap between the shroud and the envelope can be made small, the portion of the shroud wall near the arc can be thickened, the arctube can be offset above the longitudinal axis of the shroud, and the return lead of the arctube can be located between the shroud and the arctube.
    Type: Application
    Filed: September 29, 2009
    Publication date: January 28, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Gary Robert ALLEN, David C. DUDIK, Viktor K. VARGA, Robert BARANYI, Agoston BOROCZKI, Elizabeth A. GUZOWSKI, Jianwu LI, Rocco T. GIORDANO, Svetlana SELEZNEVA, Amol S. MULAY