Patents by Inventor Svetoslav Ivanov Nikolov

Svetoslav Ivanov Nikolov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11911210
    Abstract: A system includes an image guidance system with a memory with computer executable instruction, a processor configured to execute the computer executable instructions, and a display. The computer executable instructions cause the processor to: receive a three-dimensional model of vasculature from an ultrasound imaging system, receive a real-time optical feed of an interior of a cavity from an optical camera-based guidance system, receive a first tracking signal indicative of a first spatial location of a probe of the ultrasound imaging system, receive a second spatial location of the optical camera-based guidance system, and overlay the optical feed with the three-dimensional model based on the first and second tracking signals. The display is configured to visually present the optical feed with the three-dimensional model overlaid thereover.
    Type: Grant
    Filed: June 15, 2018
    Date of Patent: February 27, 2024
    Assignee: BK MEDICAL APS
    Inventors: Fredrik Gran, Svetoslav Ivanov Nikolov
  • Patent number: 11911222
    Abstract: A system includes a transducer array configured to produce a signal indicative of a received echo wave, receive circuitry configured to amplify and digitize the signal, sub-systems configured to process the digitized signal to generate an image including electronic noise from the system, and a system controller. The system controller is configured to retrieve a pre-determined noise level of an analog front end of the receive circuitry, configure the sub-systems, wherein each of sub-systems includes multiple processing blocks, and the configuring determines which of the processing blocks are employed and which of the processing blocks are bypassed for a scan, and determine a noise level for each of the employed sub-systems based on a corresponding noise model. The sub-systems include a processor configured to adaptively vary at least one of a gain and a dynamic range of the image as a function of depth based on the noise levels.
    Type: Grant
    Filed: June 28, 2021
    Date of Patent: February 27, 2024
    Assignee: BK MEDICAL APS
    Inventors: Jens Mose Pedersen, Svetoslav Ivanov Nikolov
  • Patent number: 11751849
    Abstract: An ultrasound imaging system includes a probe and a console. The probe includes an elongate shaft with a long axis, a transducer array disposed the shaft along the long axis and configured to generate signals indicative of received echoes, and a motor with a position sensor configured to rotate the shaft within a predetermined arc. The console includes a beamformer configured to process the signals from the transducer array and generate at least a volume of data for each sweep of the transducer array along the arc. The console further includes a display configured to display the volume of data.
    Type: Grant
    Filed: September 27, 2017
    Date of Patent: September 12, 2023
    Assignee: B-K Medical Aps
    Inventors: Fredrik Gran, Svetoslav Ivanov Nikolov, Jens Munk Hansen, Robert Harold Owen
  • Patent number: 11452498
    Abstract: An ultrasound imaging system (102) includes a transducer array (108) with a two-dimensional non-rectangular array of rows (110) of elements, transmit circuitry (112) that actuates the elements to transmit an ultrasound signal into a field of view, receive circuitry (114) that receives echoes produced in response to an interaction between the ultrasound signal and a structure in the field of view, and a beamformer that processes the echoes, thereby generating one or more scan lines indicative of the field of view.
    Type: Grant
    Filed: November 2, 2018
    Date of Patent: September 27, 2022
    Assignee: BK Medical APS
    Inventors: Svetoslav Ivanov Nikolov, Jacob Kortbek, Henrik Jensen
  • Patent number: 11372103
    Abstract: A method includes receiving first electrical signals from a first single-element transducer (1121) and second electrical signals from a second single-element transducer (1122). The transducers are disposed on a shaft (110), which has a longitudinal axis (200), of an ultrasound imaging probe (102) with transducing sides disposed transverse to and facing away from the longitudinal axis. The transducers are angularly offset from each other on the shaft by a non-zero angle. The transducers are operated at first and second different cutoff frequencies. The shaft concurrently translates and rotates while the transducers receive the first and second ultrasound signals. The method further includes delay and sum beamforming, with first and second beamformers (1201, 1202), the first and second electrical signals, respectively via different processing chains (7121, 7122), employing an adaptive synthetic aperture technique, producing first and second images.
    Type: Grant
    Filed: March 1, 2016
    Date of Patent: June 28, 2022
    Assignee: B-K MEDICAL APS
    Inventors: Svetoslav Ivanov Nikolov, Jens Munk Hansen
  • Publication number: 20210321990
    Abstract: A system includes a transducer array configured to produce a signal indicative of a received echo wave, receive circuitry configured to amplify and digitize the signal, sub-systems configured to process the digitized signal to generate an image including electronic noise from the system, and a system controller. The system controller is configured to retrieve a pre-determined noise level of an analog front end of the receive circuitry, configure the sub-systems, wherein each of sub-systems includes multiple processing blocks, and the configuring determines which of the processing blocks are employed and which of the processing blocks are bypassed for a scan, and determine a noise level for each of the employed sub-systems based on a corresponding noise model. The sub-systems include a processor configured to adaptively vary at least one of a gain and a dynamic range of the image as a function of depth based on the noise levels.
    Type: Application
    Filed: June 28, 2021
    Publication date: October 21, 2021
    Applicant: B-K Medical Aps
    Inventors: Jens Mose Pedersen, Svetoslav Ivanov Nikolov
  • Patent number: 11076835
    Abstract: A system includes a transducer array configured to produce a signal indicative of a received echo wave, receive circuitry configured to amplify and digitize the signal, sub-systems configured to process the digitized signal to generate an image including electronic noise from the system, and a system controller. The system controller is configured to retrieve a pre-determined noise level of an analog front end of the receive circuitry, configure the sub-systems, wherein each of sub-systems includes multiple processing blocks, and the configuring determines which of the processing blocks are employed and which of the processing blocks are bypassed for a scan, and determine a noise level for each of the employed sub-systems based on a corresponding noise model. The sub-systems include a processor configured to adaptively vary at least one of a gain and a dynamic range of the image as a function of depth based on the noise levels.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: August 3, 2021
    Assignee: BK MEDICAL, APS
    Inventors: Jens Mose Pedersen, Svetoslav Ivanov Nikolov
  • Patent number: 10901084
    Abstract: An ultrasound imaging includes a beamformer configured to process ultrasound echo signals generated by the plurality of elements of a transducer array. The beamformer includes a delay processor configured to generate a delay for each of the signals and apply the delays to corresponding signals and a summer configured to sum the delayed signals to produce an image. The delay processor includes a spatio-temporal processor configured to computed delays based on time-of-flight calculations from a center of the elements to one of a transmit focal point, a virtual source or a plane, a spatial correction processor configured to compute delay corrections for the computed delays, an adder configured to add the delay corrections to the computed delays to produce corrected delays, and a delay component configured to delay each of the signals with a corresponding corrected delay.
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: January 26, 2021
    Assignee: B-K Medical ApS
    Inventors: Jens Munk Hansen, Svetoslav Ivanov Nikolov, Henrik Jensen
  • Patent number: 10792013
    Abstract: An ultrasound imaging system (100) includes a transducer array (102). The transducer array includes a first set of transducer elements (206 or 208, 302 or 304) and a second set of transducer elements (208 or 206, 304 or 302). The first and second sets of transducer elements includes long axes and are angularly offset from each other by a non-zero angle with respect to the long axes. The ultrasound imaging system further includes a velocity processor (120) that processes echoes received by the first and second sets of transducer elements and determines an axial and two transverse flow velocity components based on the received echoes.
    Type: Grant
    Filed: May 29, 2013
    Date of Patent: October 6, 2020
    Assignee: B-K Medical ApS
    Inventors: Henrik Jensen, Svetoslav Ivanov Nikolov, Bo Hansen
  • Publication number: 20190380786
    Abstract: A system includes an image guidance system with a memory with computer executable instruction, a processor configured to execute the computer executable instructions, and a display. The computer executable instructions cause the processor to: receive a three-dimensional model of vasculature from an ultrasound imaging system, receive a real-time optical feed of an interior of a cavity from an optical camera-based guidance system, receive a first tracking signal indicative of a first spatial location of a probe of the ultrasound imaging system, receive a second spatial location of the optical camera-based guidance system, and overlay the optical feed with the three-dimensional model based on the first and second tracking signals. The display is configured to visually present the optical feed with the three-dimensional model overlaid thereover.
    Type: Application
    Filed: June 15, 2018
    Publication date: December 19, 2019
    Applicant: B-K Medical Aps
    Inventors: Fredrik GRAN, Svetoslav Ivanov NIKOLOV
  • Publication number: 20190150887
    Abstract: An ultrasound imaging system (102) includes a transducer array (108) with a two-dimensional non-rectangular array of rows (110) of elements, transmit circuitry (112) that actuates the elements to transmit an ultrasound signal into a field of view, receive circuitry (114) that receives echoes produced in response to an interaction between the ultrasound signal and a structure in the field of view, and a beamformer that processes the echoes, thereby generating one or more scan lines indicative of the field of view.
    Type: Application
    Filed: November 2, 2018
    Publication date: May 23, 2019
    Inventors: Svetoslav Ivanov Nikolov, Jacob Kortbek, Henrik Jensen
  • Publication number: 20190090850
    Abstract: An ultrasound imaging system includes a probe and a console. The probe includes an elongate shaft with a long axis, a transducer array disposed the shaft along the long axis and configured to generate signals indicative of received echoes, and a motor with a position sensor configured to rotate the shaft within a predetermined arc. The console includes a beamformer configured to process the signals from the transducer array and generate at least a volume of data for each sweep of the transducer array along the arc. The console further includes a display configured to display the volume of data.
    Type: Application
    Filed: September 27, 2017
    Publication date: March 28, 2019
    Applicant: B-K Medical Aps
    Inventors: Fredrik GRAN, Svetoslav Ivanov Nikolov, Jens Munk Hansen, Robert Harold Owen
  • Publication number: 20190072671
    Abstract: A method includes receiving first electrical signals from a first single-element transducer (1121) and second electrical signals from a second single-element transducer (1122). The transducers are disposed on a shaft (110), which has a longitudinal axis (200), of an ultrasound imaging probe (102) with transducing sides disposed transverse to and facing away from the longitudinal axis. The transducers are angularly offset from each other on the shaft by a non-zero angle. The transducers are operated at first and second different cutoff frequencies. The shaft concurrently translates and rotates while the transducers receive the first and second ultrasound signals. The method further includes delay and sum beamforming, with first and second beamformers (1201, 1202), the first and second electrical signals, respectively via different processing chains (7121, 7122), employing an adaptive synthetic aperture technique, producing first and second images.
    Type: Application
    Filed: March 1, 2016
    Publication date: March 7, 2019
    Applicant: B-K Medical Aps
    Inventors: Svetoslav Ivanov Nikolov, Jens Munk Hansen
  • Patent number: 10149663
    Abstract: An ultrasound imaging system (102) includes a transducer array (108) with a two-dimensional non-rectangular array of rows (110) of elements, transmit circuitry (112) that actuates the elements to transmit an ultrasound signal into a field of view, receive circuitry (114) that receives echoes produced in response to an interaction between the ultrasound signal and a structure in the field of view, and a beamformer that processes the echoes, thereby generating one or more scan lines indicative of the field of view.
    Type: Grant
    Filed: September 18, 2012
    Date of Patent: December 11, 2018
    Assignee: BK Medical Aps
    Inventors: Svetoslav Ivanov Nikolov, Jacob Kortbek, Henrik Jensen
  • Publication number: 20180303457
    Abstract: An imaging transducer (302) includes a plurality of transducer elements (404, 604, 704, 804) arranged with respect to each other in an array along an long axis of the transducer, wherein an effective width of a transducer element of the transducer is equal to or greater than a center-to-center distance between adjacent transducer elements. A method includes acquiring data with an imaging transducer, wherein the transducer includes a plurality of transducer elements arranged with respect to each other in an array along an long axis of the transducer, wherein an effective width of a transducer element of the transducer is equal to or greater than a center-to-center distance between adjacent transducer elements.
    Type: Application
    Filed: April 24, 2017
    Publication date: October 25, 2018
    Applicant: B-K Medical Aps
    Inventors: Henrik Jensen, Svetoslav Ivanov Nikolov
  • Publication number: 20180180727
    Abstract: An ultrasound imaging includes a beamformer configured to process ultrasound echo signals generated by the plurality of elements of a transducer array. The beamformer includes a delay processor configured to generate a delay for each of the signals and apply the delays to corresponding signals and a summer configured to sum the delayed signals to produce an image. The delay processor includes a spatio-temporal processor configured to computed delays based on time-of-flight calculations from a center of the elements to one of a transmit focal point, a virtual source or a plane, a spatial correction processor configured to compute delay corrections for the computed delays, an adder configured to add the delay corrections to the computed delays to produce corrected delays, and a delay component configured to delay each of the signals with a corresponding corrected delay.
    Type: Application
    Filed: December 22, 2016
    Publication date: June 28, 2018
    Inventors: Jens Munk Hansen, Svetoslav Ivanov Nikolov, Henrik Jensen
  • Patent number: 9964634
    Abstract: A motion processor (118) includes a motion estimator (306) that iteratively estimates a motion between a pair of consecutive frames of pre-processed echoes, wherein the motion estimator (306) generates the estimated motion based on at least on one iteration. A method includes iteratively estimating tissue motion between a pair of consecutive frames of pre-processed echoes over at least one iteration.
    Type: Grant
    Filed: September 20, 2012
    Date of Patent: May 8, 2018
    Assignee: B-K Medical Aps
    Inventors: Svetoslav Ivanov Nikolov, Jacob Kortbek
  • Patent number: 9638798
    Abstract: An imaging transducer (302) includes a plurality of transducer elements (404, 604, 704, 804) arranged with respect to each other in an array along an long axis of the transducer, wherein an effective width of a transducer element of the transducer is equal to or greater than a center-to-center distance between adjacent transducer elements. A method includes acquiring data with an imaging transducer, wherein the transducer includes a plurality of transducer elements arranged with respect to each other in an array along an long axis of the transducer, wherein an effective width of a transducer element of the transducer is equal to or greater than a center-to-center distance between adjacent transducer elements.
    Type: Grant
    Filed: September 20, 2010
    Date of Patent: May 2, 2017
    Assignee: B-K Medical Aps
    Inventors: Henrik Jensen, Svetoslav Ivanov Nikolov
  • Publication number: 20150245812
    Abstract: An ultrasound imaging system (102) includes a transducer array (108) with a two-dimensional non-rectangular array of rows (110) of elements, transmit circuitry (112) that actuates the elements to transmit an ultrasound signal into a field of view, receive circuitry (114) that receives echoes produced in response to an interaction between the ultrasound signal and a structure in the field of view, and a beamformer that processes the echoes, thereby generating one or more scan lines indicative of the field of view.
    Type: Application
    Filed: September 18, 2012
    Publication date: September 3, 2015
    Applicant: B-K MEDICAL APS
    Inventors: Svetoslav Ivanov Nikolov, Jacob Kortbek, Henrik Jensen
  • Publication number: 20150234040
    Abstract: A motion processor (118) includes a motion estimator (306) that iteratively estimates a motion between a pair of consecutive frames of pre-processed echoes, wherein the motion estimator (306) generates the estimated motion based on at least on one iteration. A method includes iteratively estimating tissue motion between a pair of consecutive frames of pre-processed echoes over at least one iteration.
    Type: Application
    Filed: September 20, 2012
    Publication date: August 20, 2015
    Inventors: Svetoslav Ivanov Nikolov, Jacob Kortbek