Patents by Inventor Swaminathan Sivakumar

Swaminathan Sivakumar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240088142
    Abstract: Neighboring gate-all-around integrated circuit structures having disjoined epitaxial source or drain regions, and methods of fabricating neighboring gate-all-around integrated circuit structures having disjoined epitaxial source or drain regions, are described. For example, a structure includes first and second vertical arrangements of nanowires, the nanowires of the second vertical arrangement of nanowires having a horizontal width greater than a horizontal width of the nanowires of the first vertical arrangement of nanowires. First and second gate stacks are over the first and second vertical arrangements of nanowires, respectively. First epitaxial source or drain structures are at ends of the first vertical arrangement of nanowires, and second epitaxial source or drain structures are at ends of the second vertical arrangement of nanowires. An intervening dielectric structure is between neighboring ones of the first epitaxial source or drain structures and of the second epitaxial source or drain structures.
    Type: Application
    Filed: November 16, 2023
    Publication date: March 14, 2024
    Inventors: Leonard P. GULER, Biswajeet GUHA, Tahir GHANI, Swaminathan SIVAKUMAR
  • Publication number: 20240071917
    Abstract: Advanced lithography techniques including sub-10 nm pitch patterning and structures resulting therefrom are described. Self-assembled devices and their methods of fabrication are described.
    Type: Application
    Filed: October 27, 2023
    Publication date: February 29, 2024
    Inventors: Richard E. SCHENKER, Robert L. BRISTOL, Kevin L. LIN, Florian GSTREIN, James M. BLACKWELL, Marie KRYSAK, Manish CHANDHOK, Paul A. NYHUS, Charles H. WALLACE, Curtis W. WARD, Swaminathan SIVAKUMAR, Elliot N. TAN
  • Publication number: 20240071955
    Abstract: Described herein is full wafer device that includes a computing logic formed over a substrate and two directional indicators formed in the substrate. The computing logic is arranged as a plurality of dies having a first die edge direction and a second die edge direction perpendicular to the first die edge direction. The computing logic further includes an angled feature extending in a feature direction, the feature direction different from the first die edge direction and the second die edge direction. The first directional indicator formed in the substrate indicates the first die edge direction. The second directional indicator formed in the substrate indicates the feature direction.
    Type: Application
    Filed: August 31, 2022
    Publication date: February 29, 2024
    Applicant: Intel Corporation
    Inventors: Abhishek A. Sharma, Tahir Ghani, Wilfred Gomes, Shem Ogadhoh, Swaminathan Sivakumar, Sagar Suthram, Elliot Tan
  • Patent number: 11862635
    Abstract: Neighboring gate-all-around integrated circuit structures having disjoined epitaxial source or drain regions, and methods of fabricating neighboring gate-all-around integrated circuit structures having disjoined epitaxial source or drain regions, are described. For example, a structure includes first and second vertical arrangements of nanowires, the nanowires of the second vertical arrangement of nanowires having a horizontal width greater than a horizontal width of the nanowires of the first vertical arrangement of nanowires. First and second gate stacks are over the first and second vertical arrangements of nanowires, respectively. First epitaxial source or drain structures are at ends of the first vertical arrangement of nanowires, and second epitaxial source or drain structures are at ends of the second vertical arrangement of nanowires. An intervening dielectric structure is between neighboring ones of the first epitaxial source or drain structures and of the second epitaxial source or drain structures.
    Type: Grant
    Filed: June 22, 2022
    Date of Patent: January 2, 2024
    Assignee: Intel Corporation
    Inventors: Leonard P. Guler, Biswajeet Guha, Tahir Ghani, Swaminathan Sivakumar
  • Publication number: 20230422463
    Abstract: SRAM devices with angled transistors, and related assemblies and methods, are disclosed herein. A transistor is referred to as “angled” if a longitudinal axis of an elongated semiconductor structure (e.g., a fin or a nanoribbon) based on which the transistor is built is at an angle other than 0 degrees or 90 degrees with respect to the edges of front or back faces of a support structure or a die on/in which the transistor resides, e.g., at an angle between about 10 and 80 degrees with respect to at least one of such edges. Implementing at least some of the transistors of SRAM cells as angled transistors may provide a promising way to increasing densities of SRAM cells on the limited real estate of semiconductor chips.
    Type: Application
    Filed: May 5, 2023
    Publication date: December 28, 2023
    Applicant: Intel Corporation
    Inventors: Abhishek A. Sharma, Sagar Suthram, Kimberly L. Pierce, Elliot Tan, Pushkar Sharad Ranade, Shem Odhiambo Ogadhoh, Wilfred Gomes, Anand S. Murthy, Swaminathan Sivakumar, Tahir Ghani
  • Patent number: 11854787
    Abstract: Advanced lithography techniques including sub-10 nm pitch patterning and structures resulting therefrom are described. Self-assembled devices and their methods of fabrication are described.
    Type: Grant
    Filed: May 2, 2022
    Date of Patent: December 26, 2023
    Assignee: Intel Corporation
    Inventors: Richard E. Schenker, Robert L. Bristol, Kevin L. Lin, Florian Gstrein, James M. Blackwell, Marie Krysak, Manish Chandhok, Paul A. Nyhus, Charles H. Wallace, Curtis W. Ward, Swaminathan Sivakumar, Elliot N. Tan
  • Publication number: 20230360972
    Abstract: Gate aligned contacts and methods of forming gate aligned contacts are described. For example, a method of fabricating a semiconductor structure includes forming a plurality of gate structures above an active region formed above a substrate. The gate structures each include a gate dielectric layer, a gate electrode, and sidewall spacers. A plurality of contact plugs is formed, each contact plug formed directly between the sidewall spacers of two adjacent gate structures of the plurality of gate structures. A plurality of contacts is formed, each contact formed directly between the sidewall spacers of two adjacent gate structures of the plurality of gate structures. The plurality of contacts and the plurality of gate structures are formed subsequent to forming the plurality of contact plugs.
    Type: Application
    Filed: July 13, 2023
    Publication date: November 9, 2023
    Inventors: Oleg GOLONZKA, Swaminathan SIVAKUMAR, Charles H. WALLACE, Tahir GHANI
  • Publication number: 20230352561
    Abstract: Gate-all-around integrated circuit structures having oxide sub-fins, and methods of fabricating gate-all-around integrated circuit structures having oxide sub-fins, are described. For example, an integrated circuit structure includes an oxide sub-fin structure having a top and sidewalls. An oxidation catalyst layer is on the top and sidewalls of the oxide sub-fin structure. A vertical arrangement of nanowires is above the oxide sub-fin structure. A gate stack is surrounding the vertical arrangement of nanowires and on at least the portion of the oxidation catalyst layer on the top of the oxide sub-fin structure.
    Type: Application
    Filed: July 10, 2023
    Publication date: November 2, 2023
    Inventors: Leonard P. GULER, Biswajeet GUHA, Tahir GHANI, Swaminathan SIVAKUMAR
  • Publication number: 20230326794
    Abstract: Embodiments disclosed herein include semiconductor devices and methods of forming such devices. In an embodiment a semiconductor device comprises a first interlayer dielectric (ILD), a plurality of source/drain (S/D) contacts in the first ILD, a plurality of gate contacts in the first ILD, wherein the gate contacts and the S/D contacts are arranged in an alternating pattern, and wherein top surfaces of the gate contacts are below top surfaces of the S/D contacts so that a channel defined by sidewall surfaces of the first ILD is positioned over each of the gate contacts, mask layer partially filling a first channel over a first gate contact, and a fill metal filling a second channel over a second gate contact that is adjacent to the first gate contact.
    Type: Application
    Filed: June 7, 2023
    Publication date: October 12, 2023
    Inventors: Leonard P. GULER, Michael HARPER, Suzanne S. RICH, Charles H. WALLACE, Curtis WARD, Richard E. SCHENKER, Paul NYHUS, Mohit K. HARAN, Reken PATEL, Swaminathan SIVAKUMAR
  • Patent number: 11756829
    Abstract: Gate aligned contacts and methods of forming gate aligned contacts are described. For example, a method of fabricating a semiconductor structure includes forming a plurality of gate structures above an active region formed above a substrate. The gate structures each include a gate dielectric layer, a gate electrode, and sidewall spacers. A plurality of contact plugs is formed, each contact plug formed directly between the sidewall spacers of two adjacent gate structures of the plurality of gate structures. A plurality of contacts is formed, each contact formed directly between the sidewall spacers of two adjacent gate structures of the plurality of gate structures. The plurality of contacts and the plurality of gate structures are formed subsequent to forming the plurality of contact plugs.
    Type: Grant
    Filed: October 6, 2022
    Date of Patent: September 12, 2023
    Assignee: Intel Corporation
    Inventors: Oleg Golonzka, Swaminathan Sivakumar, Charles H. Wallace, Tahir Ghani
  • Patent number: 11749733
    Abstract: Fin shaping using templates, and integrated circuit structures resulting therefrom, are described. For example, integrated circuit structure includes a semiconductor fin having a protruding fin portion above an isolation structure above a substrate. The protruding fin portion has a vertical portion and one or more lateral recess pairs in the vertical portion. A gate stack is over and conformal with the protruding fin portion of the semiconductor fin. A first source or drain region is at a first side of the gate stack. A second source or drain region is at a second side of the gate stack opposite the first side of the gate stack.
    Type: Grant
    Filed: March 10, 2022
    Date of Patent: September 5, 2023
    Assignee: Intel Corporation
    Inventors: Leonard P. Guler, Biswajeet Guha, Mark Armstrong, William Hsu, Tahir Ghani, Swaminathan Sivakumar
  • Patent number: 11742410
    Abstract: Gate-all-around integrated circuit structures having oxide sub-fins, and methods of fabricating gate-all-around integrated circuit structures having oxide sub-fins, are described. For example, an integrated circuit structure includes an oxide sub-fin structure having a top and sidewalls. An oxidation catalyst layer is on the top and sidewalls of the oxide sub-fin structure. A vertical arrangement of nanowires is above the oxide sub-fin structure. A gate stack is surrounding the vertical arrangement of nanowires and on at least the portion of the oxidation catalyst layer on the top of the oxide sub-fin structure.
    Type: Grant
    Filed: January 3, 2019
    Date of Patent: August 29, 2023
    Assignee: Intel Corporation
    Inventors: Leonard P. Guler, Biswajeet Guha, Tahir Ghani, Swaminathan Sivakumar
  • Patent number: 11721580
    Abstract: Embodiments disclosed herein include semiconductor devices and methods of forming such devices. In an embodiment a semiconductor device comprises a first interlayer dielectric (ILD), a plurality of source/drain (S/D) contacts in the first ILD, a plurality of gate contacts in the first ILD, wherein the gate contacts and the S/D contacts are arranged in an alternating pattern, and wherein top surfaces of the gate contacts are below top surfaces of the S/D contacts so that a channel defined by sidewall surfaces of the first ILD is positioned over each of the gate contacts, mask layer partially filling a first channel over a first gate contact, and a fill metal filling a second channel over a second gate contact that is adjacent to the first gate contact.
    Type: Grant
    Filed: June 10, 2019
    Date of Patent: August 8, 2023
    Assignee: Intel Corporation
    Inventors: Leonard P. Guler, Michael Harper, Suzanne S. Rich, Charles H. Wallace, Curtis Ward, Richard E. Schenker, Paul Nyhus, Mohit K. Haran, Reken Patel, Swaminathan Sivakumar
  • Publication number: 20230245974
    Abstract: A method is disclosed. The method includes a plurality of semiconductor sections and an interconnection structure connecting the plurality of semiconductor sections to provide a functionally monolithic base die. The interconnection structure includes one or more bridge die to connect one or more of the plurality of semiconductor sections to one or more other semiconductor sections or a top layer interconnect structure that connects the plurality of semiconductor sections or both the one or more bridge die and the top layer interconnect structure.
    Type: Application
    Filed: April 6, 2023
    Publication date: August 3, 2023
    Inventors: Wilfred GOMES, Mark BOHR, Rajabali KODURI, Leonard NEIBERG, Altug KOKER, Swaminathan SIVAKUMAR
  • Patent number: 11715775
    Abstract: Self-aligned gate endcap architectures with gate-all-around devices having epitaxial source or drain structures are described. For example, a structure includes first and second vertical arrangements of nanowires, the nanowires of the second vertical arrangement of nanowires having a horizontal width greater than a horizontal width of the nanowires of the first vertical arrangement of nanowires. First and second gate stacks are over the first and second vertical arrangements of nanowires, respectively. A gate endcap isolation structure is between the first and second gate stacks, respectively. First epitaxial source or drain structures are at ends of the first vertical arrangement of nanowires and have an uppermost surface below an uppermost surface of the gate endcap isolation structure. Second epitaxial source or drain structures are at ends of the second vertical arrangement of nanowires and have an uppermost surface below the uppermost surface of the gate endcap isolation structure.
    Type: Grant
    Filed: April 29, 2022
    Date of Patent: August 1, 2023
    Assignee: Intel Corporation
    Inventors: Leonard P. Guler, Biswajeet Guha, Tahir Ghani, Swaminathan Sivakumar
  • Publication number: 20230209800
    Abstract: Stitched dies having a cooling structure are described. For example, an integrated circuit structure includes a first die including a first device layer and a first plurality of metallization layers over the first device layer. The integrated circuit structure also includes a second die including a second device layer and a second plurality of metallization layers over the second device layer, the second die separated from the second die by a scribe region. A common conductive interconnection is coupling the first die and the second die at a first side of the first and second dies. A plurality of microfluidic channels is coupled to the first side of the first and second dies.
    Type: Application
    Filed: December 23, 2021
    Publication date: June 29, 2023
    Inventors: Abhishek Anil SHARMA, Wilfred GOMES, Christopher M. PELTO, Mark C. PHILLIPS, Swaminathan SIVAKUMAR
  • Publication number: 20230207445
    Abstract: Stitched dies having high bandwidth and capacity are described. For example, an integrated circuit structure includes a first die including a first device layer and a first plurality of metallization layers over the first device layer, wherein the first device layer is a logic device layer. The integrated circuit structure also includes a second die including a second device layer and a second plurality of metallization layers over the second device layer, the second die separated from the first die by a scribe region. The second device layer is a transistor device layer, and the second plurality of metallization layers includes a layer of capacitor structures between an upper metallization layer portion and a lower metallization layer portion. A common conductive interconnection is coupling the first die and the second die at a first side of the first and second dies.
    Type: Application
    Filed: December 23, 2021
    Publication date: June 29, 2023
    Inventors: Abhishek Anil SHARMA, Christopher M. PELTO, Wilfred GOMES, Mark C. PHILLIPS, Swaminathan SIVAKUMAR, Shem O. OGADHOH
  • Publication number: 20230207565
    Abstract: Stitched dies having backside power delivery are described are described. For example, an integrated circuit structure includes a first die including a first device layer and a first plurality of metallization layers over the first device layer. The integrated circuit structure also includes a second die including a second device layer and a second plurality of metallization layers over the second device layer, the second die separated from the second die by a scribe region. A signal line is coupling the first die and the second die at a first side of the first and second dies. A backside power rail is coupling the first die and the second die at a second side of the first and second dies, the second side opposite the first side.
    Type: Application
    Filed: December 23, 2021
    Publication date: June 29, 2023
    Inventors: Abhishek Anil SHARMA, Wilfred GOMES, Swaminathan SIVAKUMAR, Mark C. PHILLIPS, Christopher M. PELTO
  • Patent number: 11652060
    Abstract: A method is disclosed. The method includes a plurality of semiconductor sections and an interconnection structure connecting the plurality of semiconductor sections to provide a functionally monolithic base die. The interconnection structure includes one or more bridge die to connect one or more of the plurality of semiconductor sections to one or more other semiconductor sections or a top layer interconnect structure that connects the plurality of semiconductor sections or both the one or more bridge die and the top layer interconnect structure.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: May 16, 2023
    Assignee: Intel Corporation
    Inventors: Wilfred Gomes, Mark Bohr, Rajabali Koduri, Leonard Neiberg, Altug Koker, Swaminathan Sivakumar
  • Publication number: 20230089815
    Abstract: Fin trim plug structures for imparting channel stress are described. In an example, an integrated circuit structure includes a fin including silicon, the fin having a top and sidewalls. The fin has a trench separating a first fin portion and a second fin portion. A first gate structure including a gate electrode is over the top of and laterally adjacent to the sidewalls of the first fin portion. A second gate structure including a gate electrode is over the top of and laterally adjacent to the sidewalls of the second fin portion. An isolation structure is in the trench of the fin, the isolation structure between the first gate structure and the second gate structure. The isolation structure includes a first dielectric material laterally surrounding a recessed second dielectric material distinct from the first dielectric material, the recessed second dielectric material laterally surrounding an oxidation catalyst layer.
    Type: Application
    Filed: November 23, 2022
    Publication date: March 23, 2023
    Inventors: Leonard GULER, Nick LINDERT, Biswajeet GUHA, Swaminathan SIVAKUMAR, Tahir GHANI