Patents by Inventor Swapan Chakraborty

Swapan Chakraborty has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9373770
    Abstract: An industrial thermoelectric generation assembly and method are provided. A plurality of thermoelectric generation elements is provided. Each element has a first side, a second side opposite the first side, and a lateral surface. A thermally insulative material surrounds the lateral surface of each thermoelectric element. The first side of each thermoelectric element is disposed to contact a process heat source, and the second side is configured to be exposed to an ambient environment. At least two of the plurality of thermoelectric generation elements are wired in series. The thermoelectric generation elements, being good thermal insulators, provide good thermal insulation to the process. Withholding heat within the process (which is desired), is converted to electricity.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: June 21, 2016
    Assignee: Rosemount Inc.
    Inventor: Swapan Chakraborty
  • Patent number: 9184364
    Abstract: A thermoelectric generator assembly. The thermoelectric generator assembly comprises a thermoelectric generator. The thermoelectric generator has a hot junction flange, a cold junction flange and a thermoelectric power output. The thermoelectric generator assembly generates electrical power from heat differentials for use in powering field devices in industrial process monitoring and control systems.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: November 10, 2015
    Assignee: Rosemount Inc.
    Inventors: Swapan Chakraborty, Robert J. Karschnia
  • Patent number: 8188359
    Abstract: A thermoelectric generator assembly includes a thermoelectric generator with hot and cold junction flanges. The hot junction flange includes an adapter shaped for thermally coupling to a process vessel. The thermoelectric generator producing a thermoelectric power output. A heat sink thermally couples to ambient air and has a heat sink flange. A heat pipe assembly includes fluid in a circulation chamber. The circulation chamber has an evaporator flange mounted to the cold junction flange and a condenser flange mounted to the heat sink flange. At least a portion of the fluid transports heat from the evaporator flange to the condenser flange. When a heat pipe assembly on a cold junction flange is used with many of the types of heat flows that are available in process industries, more efficient thermoelectric power generation can be provided in the process industries.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: May 29, 2012
    Assignee: Rosemount Inc.
    Inventor: Swapan Chakraborty
  • Patent number: 8103316
    Abstract: A field device includes a power control module, a network interface module that communicates over a wireless network, and a device interface module for operating transducers, such as a sensor or an actuator. The power control module controls distribution of electrical power so that the network interface module receives electrical power while it is attempting to join the wireless network. Once the network interface module has joined the wireless network, the power control module allows the network interface module and the device interface module to share electrical power.
    Type: Grant
    Filed: July 25, 2007
    Date of Patent: January 24, 2012
    Assignee: Rosemount Inc.
    Inventors: Swapan Chakraborty, Kelly M. Orth
  • Patent number: 8079269
    Abstract: A pressure sensor comprises a first pressure chamber containing fill fluid at a first pressure, a second pressure chamber containing fill fluid at a second pressure, a porous dielectric diaphragm having first and second major surfaces exposed to the first and second pressure chambers, and first and second electrodes positioned with respect to the first and second major surfaces. A method for sensing pressure is also disclosed, comprising applying first and second pressures to fill fluid in first and second pressure chambers of a pressure sensor having a porous dielectric diaphragm, and producing an output representative of a pressure differential between the pressures, as a function of surface charges on first and second major surfaces of the porous dielectric diaphragm.
    Type: Grant
    Filed: May 16, 2007
    Date of Patent: December 20, 2011
    Assignee: Rosemount Inc.
    Inventor: Swapan Chakraborty
  • Patent number: 7567013
    Abstract: Vibration-based electrical power generation is provided. In one aspect, a vibration-based power generator is embodied within a machine dampener and includes an electromotive power generation module and a piezoelectric power generation module. A power storage device is operably coupled to the electromotive power generation module and the piezoelectric power generation module. In another aspect, a device for generating electrical energy based is provided. The device includes a housing operably coupleable to a source of vibration. The housing defines a chamber inside. A first circular permanent magnet is located within the chamber and has an outer diameter. A ring-type permanent magnet is located around the first circular permanent magnet and defines an annular space therebetween. At least one voice coil portion is located in the annular space and is coupled to a flexure structure to allow the voice coil portion(s) to move within the flux of the permanent magnets in response to vibration.
    Type: Grant
    Filed: August 13, 2007
    Date of Patent: July 28, 2009
    Assignee: Rosemount Inc.
    Inventors: Liangju Lu, Swapan Chakraborty, John McIntire
  • Publication number: 20080282806
    Abstract: A pressure sensor comprises a first pressure chamber containing fill fluid at a first pressure, a second pressure chamber containing fill fluid at a second pressure, a porous dielectric diaphragm having first and second major surfaces exposed to the first and second pressure chambers, and first and second electrodes positioned with respect to the first and second major surfaces. A method for sensing pressure is also disclosed, comprising applying first and second pressures to fill fluid in first and second pressure chambers of a pressure sensor having a porous dielectric diaphragm, and producing an output representative of a pressure differential between the pressures, as a function of surface charges on first and second major surfaces of the porous dielectric diaphragm.
    Type: Application
    Filed: May 16, 2007
    Publication date: November 20, 2008
    Applicant: Rosemount Inc.
    Inventor: Swapan Chakraborty
  • Patent number: 7437938
    Abstract: A sensor preferably capable of high resolution sensing over a large operating range includes a composite diaphragm containing nanotubes or nanowires. The nanotubes or nanowires preferably form a mat that is embedded in insulating material, such as high dielectric or insulating thin films. The nanotubes or nanowires may provide the diaphragm with a Young's modulus of greater than about 1000 GPa and a tensile strength of greater than about 100 GPa. The strain in the nanotubes or nanowires may be measured by a change in resistance, voltage, current or capacitance.
    Type: Grant
    Filed: March 21, 2007
    Date of Patent: October 21, 2008
    Assignee: Rosemount Inc.
    Inventor: Swapan Chakraborty
  • Patent number: 7437939
    Abstract: Pressure and mechanical sensors include a sensing component formed of a titanium and tantalum alloy having an elastic (Young's) modulus of less than about 80 GPa and a tensile strength of greater than about 1,000 MPa. The high strength and low elastic modulus, together with very low temperature dependence of the elastic modulus and very low linear thermal expansion, result in high resolution and precise measurement over a large temperature range.
    Type: Grant
    Filed: April 13, 2007
    Date of Patent: October 21, 2008
    Assignee: Rosemount Inc.
    Inventors: Swapan Chakraborty, David A. Broden
  • Publication number: 20080253058
    Abstract: Pressure and mechanical sensors include a sensing component formed of a titanium and tantalum alloy having an elastic (Young's) modulus of less than about 80 GPa and a tensile strength of greater than about 1,000 MPa. The high strength and low elastic modulus, together with very low temperature dependence of the elastic modulus and very low linear thermal expansion, result in high resolution and precise measurement over a large temperature range.
    Type: Application
    Filed: April 13, 2007
    Publication date: October 16, 2008
    Applicant: Rosemount Inc.
    Inventors: Swapan Chakraborty, David A. Broden
  • Publication number: 20080229839
    Abstract: A sensor preferably capable of high resolution sensing over a large operating range includes a composite diaphragm containing nanotubes or nanowires. The nanotubes or nanowires preferably form a mat that is embedded in insulating material, such as high dielectric or insulating thin films. The nanotubes or nanowires may provide the diaphragm with a Young's modulus of greater than about 1000 GPa and a tensile strength of greater than about 100 GPa. The strain in the nanotubes or nanowires may be measured by a change in resistance, voltage, current or capacitance.
    Type: Application
    Filed: March 21, 2007
    Publication date: September 25, 2008
    Applicant: Rosemount Inc.
    Inventor: Swapan Chakraborty
  • Publication number: 20080083445
    Abstract: A thermoelectric generator assembly includes a thermoelectric generator with hot and cold junction flanges. The hot junction flange includes an adapter shaped for thermally coupling to a process vessel. The thermoelectric generator producing a thermoelectric power output. A heat sink thermally couples to ambient air and has a heat sink flange. A heat pipe assembly includes fluid in a circulation chamber. The circulation chamber has an evaporator flange mounted to the cold junction flange and a condenser flange mounted to the heat sink flange. At least a portion of the fluid transports heat from the evaporator flange to the condenser flange. When a heat pipe assembly on a cold junction flange is used with many of the types of heat flows that are available in process industries, more efficient thermoelectric power generation can be provided in the process industries.
    Type: Application
    Filed: September 28, 2006
    Publication date: April 10, 2008
    Inventor: Swapan Chakraborty
  • Publication number: 20080083446
    Abstract: A thermoelectric generator assembly. The thermoelectric generator assembly comprises a thermoelectric generator. The thermoelectric generator has a hot junction flange, a cold junction flange and a thermoelectric power output. The thermoelectric generator assembly generates electrical power from heat differentials for use in powering field devices in industrial process monitoring and control systems.
    Type: Application
    Filed: September 28, 2006
    Publication date: April 10, 2008
    Inventors: Swapan Chakraborty, Robert J. Karschnia
  • Publication number: 20080081676
    Abstract: A field device includes a power control module, a network interface module that communicates over a wireless network, and a device interface module for operating transducers, such as a sensor or an actuator. The power control module controls distribution of electrical power so that the network interface module receives electrical power while it is attempting to join the wireless network. Once the network interface module has joined the wireless network, the power control module allows the network interface module and the device interface module to share electrical power.
    Type: Application
    Filed: July 25, 2007
    Publication date: April 3, 2008
    Applicant: Rosemount, Inc.
    Inventors: Swapan Chakraborty, Kelly M. Orth
  • Publication number: 20080078434
    Abstract: An industrial thermoelectric generation assembly and method are provided. A plurality of thermoelectric generation elements is provided. Each element has a first side, a second side opposite the first side, and a lateral surface. A thermally insulative material surrounds the lateral surface of each thermoelectric element. The first side of each thermoelectric element is disposed to contact a process heat source, and the second side is configured to be exposed to an ambient environment. At least two of the plurality of thermoelectric generation elements are wired in series. The thermoelectric generation elements, being good thermal insulators, provide good thermal insulation to the process. Withholding heat within the process (which is desired), is converted to electricity.
    Type: Application
    Filed: September 28, 2007
    Publication date: April 3, 2008
    Applicant: Rosemount Inc.
    Inventor: Swapan Chakraborty
  • Publication number: 20080036307
    Abstract: Vibration-based electrical power generation is provided. In one aspect, a vibration-based power generator is embodied within a machine dampener and includes an electromotive power generation module and a piezoelectric power generation module. A power storage device is operably coupled to the electromotive power generation module and the piezoelectric power generation module. In another aspect, a device for generating electrical energy based is provided. The device includes a housing operably coupleable to a source of vibration. The housing defines a chamber inside. A first circular permanent magnet is located within the chamber and has an outer diameter. A ring-type permanent magnet is located around the first circular permanent magnet and defines an annular space therebetween. At least one voice coil portion is located in the annular space and is coupled to a flexure structure to allow the voice coil portion(s) to move within the flux of the permanent magnets in response to vibration.
    Type: Application
    Filed: August 13, 2007
    Publication date: February 14, 2008
    Inventors: Liangju Lu, Swapan Chakraborty, John McIntire