Patents by Inventor Swee Liang Wong

Swee Liang Wong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240307842
    Abstract: The present disclosure generally relates to a flow reactor system (100) and a flow reaction method (200). The flow reactor system (100) comprises liquid pumps (110) for communicating liquid reagents based on a set of flow conditions, a fluid pump (200) for communicating a carrier fluid that is immiscible with the liquid reagents; a fluidic mixer (130) for mixing the liquid reagents into a liquid mixture, a measurement device (150) for measuring properties of liquid plugs (140) discharged from an outlet (136) of the fluidic mixer (130); and a control module configured for controlling the liquid pumps (110) and adjusting the flow conditions based on the measured properties of the liquid plugs (140), wherein the liquid plugs (140) are representative of different flow conditions.
    Type: Application
    Filed: July 20, 2022
    Publication date: September 19, 2024
    Inventors: Yee Fun LIM, Yang XU, Jian Wei Jayce CHENG, Swee Liang WONG, Vijila CHELLAPPAN, Jatin KUMAR, Daniil BASH, Tonio BUONASSISI, Kedar HIPPALGAONKAR
  • Publication number: 20240301550
    Abstract: A method of forming a transition metal dichalcogenide layer on a substrate is provided. The method may include providing a transition metal oxide, a chalcogen source, a non-gaseous chalcogen scavenger, and a substrate, wherein the substrate is disposed downstream of the transition metal oxide and the chalcogen source, and wherein the non-gaseous chalcogen scavenger is disposed in proximity to the transition metal oxide; generating vapors of the transition metal oxide and vapors of the chalcogen source, wherein the non-gaseous chalcogen scavenger reacts preferentially with the vapors of the chalcogen source; disposing the vapors generated from the transition metal oxide and the chalcogen source on the substrate; and reacting the vapors of the transition metal oxide and the chalcogen source on the substrate to obtain the transition metal dichalcogenide layer on the substrate. An arrangement for forming a transition metal dichalcogenide layer on a substrate is also provided.
    Type: Application
    Filed: May 7, 2024
    Publication date: September 12, 2024
    Inventors: Swee Liang Wong, Yee Fun Lim, Dongzhi Chi
  • Patent number: 12006569
    Abstract: A method of forming a transition metal dichalcogenide layer on a substrate is provided. The method may include providing a transition metal oxide, a chalcogen source, a non-gaseous chalcogen scavenger, and a substrate, wherein the substrate is disposed downstream of the transition metal oxide and the chalcogen source, and wherein the non-gaseous chalcogen scavenger is disposed in proximity to the transition metal oxide; generating vapors of the transition metal oxide and vapors of the chalcogen source, wherein the non-gaseous chalcogen scavenger reacts preferentially with the vapors of the chalcogen source; disposing the vapors generated from the transition metal oxide and the chalcogen source on the substrate; and reacting the vapors of the transition metal oxide and the chalcogen source on the substrate to obtain the transition metal dichalcogenide layer on the substrate.
    Type: Grant
    Filed: March 11, 2020
    Date of Patent: June 11, 2024
    Assignee: Agency for Science, Technology and Research
    Inventors: Swee Liang Wong, Yee Fun Lim, Dongzhi Chi
  • Publication number: 20220178018
    Abstract: A method of forming a transition metal dichalcogenide layer on a substrate is provided. The method may include providing a transition metal oxide, a chalcogen source, a non-gaseous chalcogen scavenger, and a substrate, wherein the substrate is disposed downstream of the transition metal oxide and the chalcogen source, and wherein the non-gaseous chalcogen scavenger is disposed in proximity to the transition metal oxide; generating vapors of the transition metal oxide and vapors of the chalcogen source, wherein the non-gaseous chalcogen scavenger reacts preferentially with the vapors of the chalcogen source; disposing the vapors generated from the transition metal oxide and the chalcogen source on the substrate; and reacting the vapors of the transition metal oxide and the chalcogen source on the substrate to obtain the transition metal dichalcogenide layer on the substrate.
    Type: Application
    Filed: March 11, 2020
    Publication date: June 9, 2022
    Inventors: Swee Liang Wong, Yee Fun Lim, Dongzhi Chi