Patents by Inventor Swie-In Tan

Swie-In Tan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6425988
    Abstract: A method and system for producing a film (preferably a thin film with highly uniform or highly accurate custom graded thickness) on a flat or graded substrate (such as concave or convex optics), by sweeping the substrate across a vapor deposition source operated with time-varying flux distribution. In preferred embodiments, the source is operated with time-varying power applied thereto during each sweep of the substrate to achieve the time-varying flux distribution as a function of time. A user selects a source flux modulation recipe for achieving a predetermined desired thickness profile of the deposited film. The method relies on precise modulation of the deposition flux to which a substrate is exposed to provide a desired coating thickness distribution.
    Type: Grant
    Filed: November 13, 2000
    Date of Patent: July 30, 2002
    Inventors: Claude Montcalm, James Allen Folta, Swie-In Tan, Ira Reiss
  • Patent number: 5962080
    Abstract: A method of depositing insulating thin films on a substrate employs a target that is formed of material which includes a constituent element of the insulating thin film. An ion beam preferably of inert gas is then directed toward the target to disperse the target material. Simultaneously, a second ion beam which includes another constituent element of the insulating thin film is also directed toward the substrate. The material from the target and the element of the second ion beam react in proper stoichiometry and is deposited onto the substrate as the insulating thin film.
    Type: Grant
    Filed: February 10, 1997
    Date of Patent: October 5, 1999
    Assignee: Read-Rite Corporation
    Inventors: Minshen Tan, Swie-In Tan
  • Patent number: 5876848
    Abstract: A method of forming a magnetic structure having layers with different magnetization orientations provided by a common magnetic bias layer includes the steps of depositing an antiferromagnetic layer between first and second ferromagnetic layers. During the deposition of the first and second ferromagnetic layers, magnetization fields of different orientations are employed separately to induce different directions of magnetization in the first and second layers. The different directions of magnetization in the first and second layers are sustained, through the process of exchange coupling, by the interposed antiferromagnetic layer which serves as the bias layer. A magnetic structure thus fabricated, can be used as a read transducer capable of generating differential signals with common mode noise rejection, and can be used as a magnetic pole for a magnetic head with reduced Barkhausen noise.
    Type: Grant
    Filed: February 3, 1997
    Date of Patent: March 2, 1999
    Assignee: Read-Rite Corporation
    Inventors: Minshen Tan, Hua-Ching Tong, Francis H. Liu, Swie-In Tan
  • Patent number: 5795451
    Abstract: A sputtering apparatus includes a rotatable array plate and a magnetic array including a group of permanent magnets arranged around the plate periphery in one or more quadrants. Each magnet is perpendicular to the plate, having a pole of a first polarity facing toward the target. A bar permanent magnet is affixed to the plate within the same quadrant of a group of magnets and is located between a center axis of rotation and the magnet group. The bar permanent magnet is perpendicular to the plate, having a pole of a second polarity facing toward the target. The magnets create a closed-loop static magnetic field that is substantially triangular in shape, concentrated in the quadrant, and offset from the center axis of rotation. The magnets in one quadrant may be replicated to fill up to four quadrants, and additional bar magnets are arranged to create a rotating magnetic field at the target that patterns the plasma to a maximum plasma density in the shape of a kidney.
    Type: Grant
    Filed: June 12, 1997
    Date of Patent: August 18, 1998
    Assignees: Read-Rite Corporation, Nordiko, Ltd.
    Inventors: Swie-In Tan, David Ian Charles Pearson
  • Patent number: 5795448
    Abstract: A device for rotating a substrate in a complex motion within a chamber which during a sputtering process. The device includes a first support element positioned within the chamber. The first support element includes a first rotating structure which is affixed between a platform for supporting the substrate and a first magnet positioned adjacent to the inner wall surface. Further, the first rotating structure is adapted to rotate about a first axis. The device further includes a second support element positioned outside of the chamber. The second support element includes a second rotating structure affixed between a planet gear adapted for engagement with a sun gear outside of the chamber and a second magnet positioned adjacent the outer wall surface and spaced apart from the first magnet. This causes the formation of a magnetic bond between the first and second magnets.
    Type: Grant
    Filed: December 8, 1995
    Date of Patent: August 18, 1998
    Assignees: Sony Corporation, Materials Research Corp., Read Rite Corp.
    Inventors: Steven Hurwitt, Ira Reiss, Marian Zielinski, Swie-In Tan
  • Patent number: 5631058
    Abstract: According to the present invention, a blank of an aluminum alloy is partially cut so as to form several disks maintained in the blank by portions of the remaining uncut aluminum. This results in the disks being supported in the blank during formation of the thin films, yet easily separated from the blank into individual disks after the thin films have been deposited. Therefore, multiple disks can be processed during a single manufacturing step.
    Type: Grant
    Filed: August 12, 1992
    Date of Patent: May 20, 1997
    Assignee: International Business Machines Corporation
    Inventors: Richard H. Flachbart, Albert P. Lee, Stafford Miller, Chester C. Oldakowski, Swie-In Tan
  • Patent number: 5612098
    Abstract: A method of forming a magnetic structure having layers with different magnetization orientations provided by a common magnetic bias layer includes the steps of depositing an antiferromagnetic layer between first and second ferromagnetic layers. During the deposition of the first and second ferromagnetic layers, magnetization fields of different orientations are employed separately to induce different directions of magnetization in the first and second layers. The different directions of magnetization in the first and second layers are sustained, through the process of exchange coupling, by the interposed antiferromagnetic layer which serves as the bias layer. A magnetic structure thus fabricated, can be used as a read transducer capable of generating differential signals with common mode noise rejection, and can be used as a magnetic pole for a magnetic head with reduced Barkhausen noise.
    Type: Grant
    Filed: August 14, 1996
    Date of Patent: March 18, 1997
    Assignee: Read-Rite Corporation
    Inventors: Minshen Tan, Hua-Ching Tong, Francis H. Liu, Swie-In Tan
  • Patent number: 5529814
    Abstract: Exchange coupled magnetic thin films are produced by depositing an antiferromagnetic layer, followed by deposition of a layer of ferromagnetic material on the antiferromagnetic layer. The composite antiferromagnetic/ferromagnetic structure is then annealed at an elevated temperature for a predetermined length of time. This process results in considerably higher exchange coupling fields than obtainable before. Alternatively, the antiferromagnetic layer may be annealed prior to deposition of the ferromagnetic layer.
    Type: Grant
    Filed: October 19, 1995
    Date of Patent: June 25, 1996
    Assignee: Read-Rite Corporation
    Inventors: Minshen Tan, Hua-Ching Tong, Swie-In Tan
  • Patent number: 5022765
    Abstract: A nulling optical bridge is disclosed herein for the measurement of the difference in the relative power of more than one light beam. The bridge can be used to precisely measure the change in reflectivity and/or transmissivity of a semiconductor device or metal. The bridge operates by splitting at least one illumination source into a number of beams wherein one of said beams is made to traverse the sample whose change in transmissivity and reflection characteristics is to be measured. A rotating polarizer is used to equate the intensity of the variable and nonvariable beams under feedback servo control from a photodetector. The incremental quantity of rotation of the polarizer can be calibrated to correspond to a number of characteristics of the sample.
    Type: Grant
    Filed: October 23, 1987
    Date of Patent: June 11, 1991
    Assignee: International Business Machines Corporation
    Inventors: Daniel Guidotti, Swie-in Tan, John G. Wilman
  • Patent number: 4534811
    Abstract: Apparatus and method for bonding surfaces together. A laser beam is applied to the opening in a bonding tip. The bonding tip includes a central cavity forming a black body tapered from the opening to a second tip end. The heated tip end is applied to the fuseable surfaces in either a thermocompression or thermosonic bonding operation.
    Type: Grant
    Filed: December 30, 1983
    Date of Patent: August 13, 1985
    Assignee: International Business Machines Corporation
    Inventors: Norman G. Ainslie, Swie-In Tan
  • Patent number: 4278867
    Abstract: Defective chips are removed from a substrate package. The package is cleaned. Replacement chips with solder bearing elements are replaced in the position(s) of the defective chip(s). Silicon chips are less damaged by heating with light wavelengths substantially shorter than infrared radiation, when the radiation is directed upon the upper chip surface and the lower chip surface carries circuitry and solder balls. Radiation is absorbed by the upper chip surface and converted there directly to heat, protecting the circuitry below. An argon-ion laser beam confined to a given chip is directed upon the upper surface of the chip to be soldered in place. A thin laser beam can be scanned under computer control across a chip to heat the areas of a chip above solder balls. Automatic temperature control of the chip can be provided by a heat detector or chip condition detector and a program controller in a feedback loop controlling laser power.
    Type: Grant
    Filed: December 29, 1978
    Date of Patent: July 14, 1981
    Assignee: International Business Machines Corporation
    Inventor: Swie-In Tan
  • Patent number: 4049522
    Abstract: Iron-silicon is sputtered onto a substrate to be used for a magnetic recording head from a target containing 4% to 7% of silicon with a substrate bias between -2.5 and -60 volts, anode-cathode spacing of about 1/2 to about 2 inches, a deposition rate of greater than 150A/min, a substrate temperature above 250.degree. C, an argon pressure above 10 microns, and a single film thickness greater than 0.4 micron, a laminated film thickness greater than 0.05 micron, and R.F. input power above 8 watts/in.sup.2.
    Type: Grant
    Filed: February 26, 1976
    Date of Patent: September 20, 1977
    Assignee: International Business Machines Corporation
    Inventors: Norman George Ainslie, Robert Douglas Hempstead, Swie-In Tan, Erich Philipp Valstyn