Patents by Inventor Sy-Hwa Chen

Sy-Hwa Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5359170
    Abstract: A hot bar apparatus for effecting solder bonds for high density electronic components has a diamond or diamond-like (i.e. a generally diamond crystal lattice with graphite impurities) surface that makes contact with the leads of the electronic component and transmits the heat necessary to effect a solder bond. The diamond or diamond-like surface has superior wear characteristics over any other material, and it also is an electrical insulator to protect the electronic components from spurious voltages and currents generated by electrical currents that provide the heat for the hot bar.
    Type: Grant
    Filed: February 18, 1992
    Date of Patent: October 25, 1994
    Assignee: AT&T Global Information Solutions Company
    Inventors: Sy-Hwa Chen, Johnston W. Peeples, Terry Craps
  • Patent number: 5224969
    Abstract: A diamond element having good bonding properties and a method for fabricating the diamond element in which a diamond substrate is coated by and bonded to a first layer of chromium carbide, a second layer containing titanium, vanadium, zirconium, niobium, tantalum, iron, cobalt, nickel or copper, is bonded to said first layer, and a third layer of tungsten, or molybdenum deposited by a CVD technique utilizing metal halides, is bonded to said second layer. The second layer functions to protect the chromium carbide layer against attack by halide containing gas during the CVD deposition of the tungsten, or molybdenum.
    Type: Grant
    Filed: April 13, 1992
    Date of Patent: July 6, 1993
    Assignee: Norton Company
    Inventors: Sy-Hwa Chen, Jeffrey S. Hansen
  • Patent number: 5151107
    Abstract: Superabrasive cutting elements, backed compacts and methods for their manufacture are disclosed wherein metal coated superabrasive particles are cemented under HPHT conditions. The superabrasives bond to the metal of the coating and the metal coatings of adjacent particles bond to each other forming a matrix. A binding aid with thermal expansion characteristics close to that of the superabrasive particle can be infiltrated through or otherwise mixed with the particles to assist in the bonding between the metal coatings and to fill in voids. Catalyst and non-catalyst binding aids can also be used. Uncoated, smaller superabrasive particles can be interstitially dispersed among the coated particles to increase the superabrasive concentration and can self bond to form a cemented/sintered structure. Tungsten is a preferred metal coating and silicon is a preferred binding/sintering aid. The superabrasive can be diamond, cubic boron nitride, boron doped diamond or crushed, sintered polycrystalline aggregates.
    Type: Grant
    Filed: July 29, 1988
    Date of Patent: September 29, 1992
    Assignee: Norton Company
    Inventors: Hyun S. Cho, Chien-Min Sung, Leo Merrill, Sy-Hwa Chen
  • Patent number: 5126207
    Abstract: A diamond element having good bonding properties and a method for fabricating the diamond element in which a diamond substrate is coated by and bonded to a first layer of chromium carbide, a second layer containing titanium is bonded to said first layer, and a third layer of tungsten, or molybdenum deposited by a CVD technique utilizing metal halides, is bonded to said second layer. The second layer functions to protect the chromium carbide layer against attack by halide containing gas during the CVD deposition of the tungsten, or molybdenum.
    Type: Grant
    Filed: July 20, 1990
    Date of Patent: June 30, 1992
    Assignee: Norton Company
    Inventors: Sy-Hwa Chen, Jeffrey S. Hansen
  • Patent number: 5116568
    Abstract: An improved temperature stable synthetic polycrystalline diamond (PCD) product includes at least one temperature stable PCD integrally and chemically bonded to a matrix carrier support through a carbide forming layer which is of a thickness of at least about 1 micron, the layer on at least one surface of the PCD is in turn is bonded to the matrix carrier. A wide variety of shapes, sizes and configurations of such products is achieved through relatively low temperature and relatively low pressure processing. Various products of various geometries are described as well as the details of the processing to achieve chemical bonding of the PCD elements in a variety of support matrix carrier materials to form a unitary structure having a temperature stability up to about 1,200 degrees C.
    Type: Grant
    Filed: May 31, 1991
    Date of Patent: May 26, 1992
    Assignee: Norton Company
    Inventors: Chien-Min Sung, Sy-Hwa Chen
  • Patent number: 5096465
    Abstract: A superhard material-metal composite product comprises a plurality of metal coated superhard particles (diamond or cubic boron nitride), and a binder alloy forming a cementing matrix which binds the coated superhard particles into a coherent mass. The binder alloy has a melting point below about 1300.degree. C. and is capable of wetting the metal coating on the superhard particles. The superhard material-metal composite product is formed by assembling the coated particles and the binder alloy in a graphite mold, and then hot pressing at temperatures and pressures well below the temperatures and pressures of the diamond forming region. The superhard component comprises about 40% to 75% by volume of the composite product. The superhard material-metal composite product is of intermediate quality and is particularly useful in earth boring bits for drilling soft rock formations having abrasive rock stringers therein.
    Type: Grant
    Filed: December 13, 1989
    Date of Patent: March 17, 1992
    Assignee: Norton Company
    Inventors: Sy-Hwa Chen, Chien-Min Sung
  • Patent number: 5062865
    Abstract: Superabrasive grits such as diamond or CBN is chemically bonded with a coating such as tungsten which is in turn bonded to a tool body providing superabrasive cutting tools such as saw blades, grinding wheels, drill bits and the like.
    Type: Grant
    Filed: November 22, 1989
    Date of Patent: November 5, 1991
    Assignee: Norton Company
    Inventors: Sy-Hwa Chen, Chien-Min Sung
  • Patent number: 5030276
    Abstract: An improved temperature stable synthetic polycrystalline diamond (PCD) product includes at least one temperature stable PCD integrally and chemically bonded to a matrix carrier support through a carbide forming layer which is of a thickness of at least about 1 micron, the layer on at least one surface of the PCD is in turn bonded to the matrix carrier. A wide variety of shapes, sizes and configurations of such products is achieved through relatively low temperature and relatively low pressure processing. Various products of various geometries are described as well as the details of the processing to achieve chemical bonding of the PCD elements in a variety of support matrix carrier materials to form a unitary structure having a temperature stability up to about 1,200 degrees C.
    Type: Grant
    Filed: November 18, 1988
    Date of Patent: July 9, 1991
    Assignee: Norton Company
    Inventors: Chien-Min Sung, Sy-Hwa Chen, Leo Merrill, Louis K. Bigelow
  • Patent number: 5024680
    Abstract: Multiple metal coated diamond grit for improved retention in a tool matrix comprises a first layer coating of a metal carbide of a strong carbide former, preferably chromium, titanium or zirconium, chemically bonded to the diamond and a second metal coating of an oxidation resistant carbide former, preferably tungsten or tantalum, chemically bonded to the first metal layer. A third metal layer coating of an alloying metal, preferably nickel, can also be added. In accordance with the method of the present invention, the first layer metal can be applied by metal vapor deposition. The second layer metal can be applied by chemical vapor deposition. The third layer of an alloying metal can be applied by electroless or electrolytic plating.
    Type: Grant
    Filed: November 7, 1988
    Date of Patent: June 18, 1991
    Assignee: Norton Company
    Inventors: Sy-Hwa Chen, Chien-Min Sung
  • Patent number: 5011514
    Abstract: Superabrasive cutting elements, backed compacts and methods for their manufacture are disclosed wherein metal coated superabrasive particles are cemented under HPHT conditions. The superabrasives bond to the metal of the coating and the metal coatings of adjacent particles bond to each other forming a matrix. A binding aid with thermal expansion characteristics close to that of the superabrasive particle can be infiltrated through or otherwise mixed with the particles to assist in the bonding between the metal coatings and to fill in voids. Catalyst and non-catalyst binding aids can also be used. Uncoated, smaller superabrasive particles can be interstitially dispersed among the coated particles to increase the superabrasive concentration and can self bond to form a cemented/sintered structure. Tungsten is a preferred metal coating and silicon is a preferred binding/sintering aid. The superabrasive can be diamond, cubic boron nitride, boron doped diamond or crushed sintered polycrystalline aggregates.
    Type: Grant
    Filed: July 11, 1989
    Date of Patent: April 30, 1991
    Assignee: Norton Company
    Inventors: Hyun S. Cho, Chien-Min Sung, Leo Merrill, Sy-Hwa Chen, Frank Csillag
  • Patent number: 4943488
    Abstract: An improved temperature stable synthetic polycrystalline diamond (PCD) product includes at least one temperature stable PCD integrally and chemically bonded to a matrix carrier support through a carbide forming layer which is of a thickness of at least about 1 micron, the layer on at least one surface of the PCD is in turn bonded to the matrix carrier. A wide variety of shapes, sizes and configurations of such products is achieved through relatively low temperature and relatively low pressure processing. Various products of various geometries are described as well as the details of the processing to achieve chemical bonding of the PCD elements in a variety of support matrix carrier materials to form a unitary structure having a temperature stability up to about 1,200 degrees C.
    Type: Grant
    Filed: November 18, 1988
    Date of Patent: July 24, 1990
    Assignee: Norton Company
    Inventors: Chien-Min Sung, Sy-Hwa Chen, Leo Merrill, Louis K. Bigelow