Patents by Inventor Syadwad Jain

Syadwad Jain has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11652018
    Abstract: A microelectronic package may be fabricated to include a microelectronic substrate, at least one microelectronic device attached to the microelectronic substrate, a heat dissipation device in thermal contact with at least one microelectronic device and having at least one projection attached to the microelectronic substrate, and at least one standoff extending from the at least one projection, wherein the at least one standoff contacts the microelectronic substrate to control the bond line thickness between the heat dissipation device and at least one microelectronic device and/or to control the bond line thickness of a sealant which may be used to attached the at least one projection to the microelectronic substrate.
    Type: Grant
    Filed: June 9, 2021
    Date of Patent: May 16, 2023
    Assignee: Intel Corporation
    Inventors: Dinesh P. R. Thanu, Hemanth K. Dhavaleswarapu, John J. Beatty, Syadwad Jain, Nachiket R. Raravikar
  • Publication number: 20210305118
    Abstract: A microelectronic package may be fabricated to include a microelectronic substrate, at least one microelectronic device attached to the microelectronic substrate, a heat dissipation device in thermal contact with at least one microelectronic device and having at least one projection attached to the microelectronic substrate, and at least one standoff extending from the at least one projection, wherein the at least one standoff contacts the microelectronic substrate to control the bond line thickness between the heat dissipation device and at least one microelectronic device and/or to control the bond line thickness of a sealant which may be used to attached the at least one projection to the microelectronic substrate.
    Type: Application
    Filed: June 9, 2021
    Publication date: September 30, 2021
    Applicant: Intel Corporation
    Inventors: Dinesh P. R. Thanu, Hemanth K. Dhavaleswarapu, John J. Beatty, Syadwad Jain, Nachiket R. Raravikar
  • Patent number: 11062970
    Abstract: A microelectronic package may be fabricated to include a microelectronic substrate, at least one microelectronic device attached to the microelectronic substrate, a heat dissipation device in thermal contact with at least one microelectronic device and having at least one projection attached to the microelectronic substrate, and at least one standoff extending from the at least one projection, wherein the at least one standoff contacts the microelectronic substrate to control the bond line thickness between the heat dissipation device and at least one microelectronic device and/or to control the bond line thickness of a sealant which may be used to attached the at least one projection to the microelectronic substrate.
    Type: Grant
    Filed: August 29, 2017
    Date of Patent: July 13, 2021
    Assignee: Intel Corporation
    Inventors: Dinesh P. R. Thanu, Hemanth K. Dhavaleswarapu, John J. Beatty, Syadwad Jain, Nachiket R. Raravikar
  • Patent number: 10969840
    Abstract: Disclosed herein are embodiments of heat spreaders with interlocked inserts, and related devices and methods. In some embodiments, a heat spreader may include: a frame formed of a first material, wherein the frame includes an opening, a projection of the frame extends into the opening, and the projection has a top surface, a side surface, and a bottom surface; a recess having at least one sidewall formed by the frame; and an insert formed of a second material different from the first material, wherein the insert is disposed in the frame and in contact with the top surface, the side surface, and the bottom surface of the projection.
    Type: Grant
    Filed: November 16, 2015
    Date of Patent: April 6, 2021
    Assignee: Intel Corporation
    Inventors: Aravindha R. Antoniswamy, Syadwad Jain, Zhizhong Tang, Wei Hu
  • Patent number: 10763188
    Abstract: Integrated heat spreaders having electromagnetically-formed features, and semiconductor packages incorporating such integrated heat spreaders, are described. In an example, an integrated heat spreader includes a top plate flattened using an electromagnetic forming process. Methods of manufacturing integrated heat spreaders having electromagnetically-formed features are also described.
    Type: Grant
    Filed: December 23, 2015
    Date of Patent: September 1, 2020
    Assignee: Intel Corporation
    Inventors: Aravindha R. Antoniswamy, Thomas John Fitzgerald, Kumaran Murugesan Chakravarthy, Syadwad Jain, Wei Hu, Zhizhong Tang
  • Patent number: 10651108
    Abstract: Devices and methods disclosed herein can include a conductive foam having pores disposed within the conductive foam. The conductive foam can be compressible between an uncompressed thickness and a compressed thickness. The compressed thickness can be ninety-five percent or less of the uncompressed thickness. In one example, a filler can be disposed in the pores of the conductive foam. The filler can include a first thermal conductivity. The first thermal conductivity can be greater than a thermal conductivity of air.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: May 12, 2020
    Assignee: Intel Corporation
    Inventors: Zhizhong Tang, Syadwad Jain, Wei Hu, Michael A. Schroeder, Rajen S. Sidhu, Carl L. Deppisch, Patrick Nardi, Kelly P. Lofgreen, Manish Dubey
  • Patent number: 10580717
    Abstract: A multiple chip package is described with multiple thermal interface materials. In one example, a package has a substrate, a first semiconductor die coupled to the substrate, a second semiconductor die coupled to the substrate, a heat spreader coupled to the die, wherein the first die has a first distance to the heat spreader and the second die has a second distance to the heat spreader, a first filled thermal interface material (TIM) between the first die and the heat spreader to mechanically and thermally couple the heat spreader to the die, and a second filled TIM between the second die and the heat spreader to mechanically and thermally couple the heat spreader to the second die.
    Type: Grant
    Filed: January 11, 2016
    Date of Patent: March 3, 2020
    Assignee: Intel Corporation
    Inventors: Boxi Liu, Hemanth K. Dhavaleswarapu, Syadwad Jain, James C. Matayabas, Jr.
  • Publication number: 20190079567
    Abstract: Disclosed herein are embodiments of heat spreaders with interlocked inserts, and related devices and methods. In some embodiments, a heat spreader may include: a frame formed of a first material, wherein the frame includes an opening, a projection of the frame extends into the opening, and the projection has a top surface, a side surface, and a bottom surface; a recess having at least one sidewall formed by the frame; and an insert formed of a second material different from the first material, wherein the insert is disposed in the frame and in contact with the top surface, the side surface, and the bottom surface of the projection.
    Type: Application
    Filed: November 16, 2015
    Publication date: March 14, 2019
    Applicant: Intel Corporation
    Inventors: Aravindha R. Antoniswamy, Syadwad Jain, Zhizhong Tang, Wei Hu
  • Publication number: 20190067153
    Abstract: A microelectronic package may be fabricated to include a microelectronic substrate, at least one microelectronic device attached to the microelectronic substrate, a heat dissipation device in thermal contact with at least one microelectronic device and having at least one projection attached to the microelectronic substrate, and at least one standoff extending from the at least one projection, wherein the at least one standoff contacts the microelectronic substrate to control the bond line thickness between the heat dissipation device and at least one microelectronic device and/or to control the bond line thickness of a sealant which may be used to attached the at least one projection to the microelectronic substrate.
    Type: Application
    Filed: August 29, 2017
    Publication date: February 28, 2019
    Applicant: Intel Corporation
    Inventors: Dinesh P. R. Thanu, Hemanth K. Dhavaleswarapu, John J. Beatty, Syadwad Jain, Nachiket R. Raravikar
  • Publication number: 20190027379
    Abstract: Disclosed herein are embodiments of sintered heat spreaders with inserts and related devices and methods. In some embodiments, a heat spreader may include: a frame including aluminum and a polymer binder; an insert disposed in the frame, wherein the insert has a thermal conductivity higher than a thermal conductivity of the frame; and a recess having at least one sidewall formed by the frame. The polymer binder may be left over from sintering frame material and insert material to form the heat spreader.
    Type: Application
    Filed: November 16, 2015
    Publication date: January 24, 2019
    Applicant: Intel Corporation
    Inventors: Wei Hu, Aravindha R. Antoniswamy, Thomas J. Fitzgerald, Nikunj P. Patel, Syadwad Jain, Zhizhong Tang, Shrenik Kothari
  • Publication number: 20180374776
    Abstract: A multiple chip package is described with multiple thermal interface materials. In one example, a package has a substrate, a first semiconductor die coupled to the substrate, a second semiconductor die coupled to the substrate, a heat spreader coupled to the die, wherein the first die has a first distance to the heat spreader and the second die has a second distance to the heat spreader, a first filled thermal interface material (TIM) between the first die and the heat spreader to mechanically and thermally couple the heat spreader to the die, and a second filled TIM between the second die and the heat spreader to mechanically and thermally couple the heat spreader to the second die.
    Type: Application
    Filed: January 11, 2016
    Publication date: December 27, 2018
    Inventors: Boxi LIU, Hemanth K. DHAVALESWARAPU, Syadwad JAIN, James C. MATAYABAS, Jr.
  • Publication number: 20180323130
    Abstract: An adhesive polymer thermal interface material is described with sintered fillers for thermal conductivity in micro-electronic packaging. Embodiments include a polymer thermal interface material (PTIM) with sinterable thermally conductive filler particles, a dispersant, and a silicone polymer matrix.
    Type: Application
    Filed: December 22, 2015
    Publication date: November 8, 2018
    Inventors: Boxi LIU, Syadwad JAIN, Jelena CULIC-VISKOTA, Nachiket R. RARAVIKAR, James C. MATAYABAS, Jr.
  • Patent number: 10056314
    Abstract: A polymer thermal interface material is described that has enhanced thermal conductivity. In one example, a vinyl-terminated silicone oil is combined with a silicone chain extender, and a thermally conductive filler comprising at least 85% by weight of the material, and comprising surface wetted particles with a range of shapes and sizes. The material may be used for bonding components inside a microelectronic package, for example.
    Type: Grant
    Filed: June 10, 2015
    Date of Patent: August 21, 2018
    Assignee: Intel Corporation
    Inventors: Randall D. Lowe, Jr., Syadwad Jain, James C. Matayabas, Jr.
  • Publication number: 20180005917
    Abstract: Devices and methods disclosed herein can include a conductive foam having pores disposed within the conductive foam. The conductive foam can be compressible between an uncompressed thickness and a compressed thickness. The compressed thickness can be ninety-five percent or less of the uncompressed thickness. In one example, a filler can be disposed in the pores of the conductive foam. The filler can include a first thermal conductivity. The first thermal conductivity can be greater than a thermal conductivity of air.
    Type: Application
    Filed: June 29, 2016
    Publication date: January 4, 2018
    Inventors: Zhizhong Tang, Syadwad Jain, Wei Hu, Michael A. Schroeder, Rajen S. Sidhu, Carl L. Deppisch, Patrick Nardi, Kelly P. Lofgreen
  • Publication number: 20170186628
    Abstract: Integrated heat spreaders having electromagnetically-formed features, and semiconductor packages incorporating such integrated heat spreaders, are described. In an example, an integrated heat spreader includes a top plate flattened using an electromagnetic forming process. Methods of manufacturing integrated heat spreaders having electromagnetically-formed features are also described.
    Type: Application
    Filed: December 23, 2015
    Publication date: June 29, 2017
    Inventors: Aravindha R. Antoniswamy, Thomas John Fitzgerald, Kumaran Murugesan Chakravarthy, Syadwad Jain, Wei Hu, Zhizhong Tang
  • Patent number: 9070660
    Abstract: A polymer thermal interface material is described that has enhanced thermal conductivity. In one example, a vinyl-terminated silicone oil is combined with a silicone chain extender, and a thermally conductive filler comprising at least 85% by weight of the material, and comprising surface wetted particles with a range of shapes and sizes. The material may be used for bonding components inside a microelectronic package, for example.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: June 30, 2015
    Assignee: Intel Corporation
    Inventors: Randall Lowe, Jr., Syadwad Jain, James C. Matayabas, Jr.
  • Patent number: 8896110
    Abstract: Embodiments of the present disclosure describe techniques and configurations for paste thermal interface materials (TIMs) and their use in integrated circuit (IC) packages. In some embodiments, an IC package includes an IC component, a heat spreader, and a paste TIM disposed between the die and the heat spreader. The paste TIM may include particles of a metal material distributed through a matrix material, and may have a bond line thickness, after curing, of between approximately 20 microns and approximately 100 microns. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: November 25, 2014
    Assignee: Intel Corporation
    Inventors: Wei Hu, Zhizhong Tang, Syadwad Jain, Rajen S. Sidhu
  • Patent number: 8866290
    Abstract: Embodiments of the present disclosure describe techniques and configurations for molded heat spreaders. In some embodiments, a heat spreader includes a first insert having a first face and a first side, the first face positioned to form a bottom surface of a first cavity, and a second insert having a second face and a second side, the second face positioned to form a bottom surface of a second cavity. The second cavity may have a depth that is different from a depth of the first cavity. The heat spreader may further include a molding material disposed between the first and second inserts and coupled with the first side and the second side, the molding material forming at least a portion of a side wall of the first cavity and at least a portion of a side wall of the second cavity. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: October 21, 2014
    Assignee: Intel Corporation
    Inventors: Zhizhong Tang, Syadwad Jain, Paul R. Start
  • Publication number: 20140264820
    Abstract: Embodiments of the present disclosure describe techniques and configurations for paste thermal interface materials (TIMs) and their use in integrated circuit (IC) packages. In some embodiments, an IC package includes an IC component, a heat spreader, and a paste TIM disposed between the die and the heat spreader. The paste TIM may include particles of a metal material distributed through a matrix material, and may have a bond line thickness, after curing, of between approximately 20 microns and approximately 100 microns. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Inventors: Wei Hu, Zhizhong Tang, Syadwad Jain, Rajen S. Sidhu
  • Publication number: 20140264818
    Abstract: A polymer thermal interface material is described that has enhanced thermal conductivity. In one example, a vinyl-terminated silicone oil is combined with a silicone chain extender, and a thermally conductive filler comprising at least 85% by weight of the material, and comprising surface wetted particles with a range of shapes and sizes. The material may be used for bonding components inside a microelectronic package, for example.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Inventors: Randall D. Lowe, JR., Syadwad Jain, James C. Matayabas