Patents by Inventor Syed M. Shahed

Syed M. Shahed has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7743606
    Abstract: A catalyst system that may regenerate while removing pollutants from an exhaust gas of an engine. The system may have a converter with multiple segments of chambers. At least one of the chambers may be regenerated while the remaining chambers are removing pollutants from the exhaust. The chambers may be rotated in turn for one-at-a-time regeneration. More than one chamber may be regenerated at a time to remove collected pollutants. The system may have plumbing and valves, and possibly mechanical movement of the chambers, within the system to effect the changing of a chamber for regeneration. The chambers connected to the exhaust may be in series or parallel. A particulate matter filter may be connected to the system, and it also may be regenerated to remove collected matter.
    Type: Grant
    Filed: November 18, 2004
    Date of Patent: June 29, 2010
    Assignee: Honeywell International Inc.
    Inventors: Vladimir Havlena, Joseph Z. Lu, Syed M. Shahed, Michael L. Rhodes, Tariq Samad
  • Patent number: 7478532
    Abstract: A turbocharger includes a compressor housing and a turbine housing wherein at least one of the compressor housing and the turbine housing includes an anti-ballistic material such as, for example, aramid fibers, S glass fibers and/or carbon fibers. A turbocharger system optionally includes a temperature controller that controls temperature in instances where operational temperatures may be detrimental to the performance characteristics of anti-ballistic material. Various other exemplary devices, methods, systems, etc., are also disclosed.
    Type: Grant
    Filed: November 7, 2005
    Date of Patent: January 20, 2009
    Assignee: Honeywell International, Inc.
    Inventors: Steven P. Martin, Christopher O. Meade, Syed M. Shahed
  • Patent number: 7467614
    Abstract: Systems and methods for using pedal position and/or pedal change rate in the fuel side and/or air side control of an engine. By knowing the pedal position and/or pedal rate, an engine controller may anticipate future fuel and/or air needs of the engine, and adjust the fuel profile and/or air profile to meet those anticipated needs. This may help improve the responsiveness, performance and emissions of the engine.
    Type: Grant
    Filed: December 29, 2004
    Date of Patent: December 23, 2008
    Assignee: Honeywell International Inc.
    Inventors: Gregory E. Stewart, Syed M. Shahed, Francesco Borrelli, Gregory J. Hampson
  • Patent number: 7469177
    Abstract: Systems and methods for controlling automotive powertrains using a distributed control architecture are disclosed. A distributed control system may include a supervisory control unit for controlling one or more powertrain subsystems, and one or more subsystem control units in communication with the supervisory control unit. The supervisory control unit can be configured to execute a central optimization algorithm that computes variables from across multiple powertrain subsystems, and then outputs a number of globally approximated command values to each associated subsystem control unit. In some embodiments, the central optimization algorithm can be configured to solve a global cost function or optimization routine. One or more of the subsystem control units can be configured to execute a lower-level algorithm or routine, which can comprise a higher-fidelity model than that used by the central optimization algorithm.
    Type: Grant
    Filed: June 17, 2005
    Date of Patent: December 23, 2008
    Assignee: Honeywell International Inc.
    Inventors: Tariq Samad, Syed M. Shahed, Joseph Z. Lu, Gregory E. Stewart, Vladimir Ravlena
  • Patent number: 7415389
    Abstract: A system for automatic multivariable calibration of an engine controller. The system may take inputs which include actuator setpoints, sensor measurements, performance requirements, and so forth. There may be an algorithm to compute engine calibration parameters for the controller. Each of the actuators may be separately stepped through to experimentally obtain actuator input and sensor output data. Algorithmic processing of the experimentally obtained data may be performed to calculate parameters of a model of an engine. A model based control design algorithm may then be invoked to obtain the calibration parameters for a controller. The calibrated controller may be tested with real or simulated engine conditions. The performance related to the parameters may be analyzed and determination of the acceptability of the data be made. If not acceptable, the parameters may be reprocessed. If acceptable, the calibration parameters may be downloaded to the engine controller for application and use.
    Type: Grant
    Filed: December 29, 2005
    Date of Patent: August 19, 2008
    Assignee: Honeywell International Inc.
    Inventors: Gregory E. Stewart, Syed M. Shahed, Soumitri N. Kolavennu
  • Patent number: 7328577
    Abstract: A multivariable controller that models the interaction between groups of sensors and groups of actuators during the operation of an engine. By accounting for the interactive effects that a group of actuators has on a sensor or group of sensors, improved system performance may be achieved. When emission sensors are used, such as NOX and/or PM sensors, the multivariable controller may help control the various engine actuators to reduce emissions of the engine.
    Type: Grant
    Filed: December 29, 2004
    Date of Patent: February 12, 2008
    Assignee: Honeywell International Inc.
    Inventors: Gregory E. Stewart, Soumitri N. Kolavennu, Francesco Borrelli, Gregory J. Hampson, Syed M. Shahed, Tariq Samad, Michael L. Rhodes
  • Patent number: 7275374
    Abstract: Methods and systems for controlling a diesel engine using a combined fuel and air-side controller are disclosed. An illustrative method may include the steps of providing a combined fuel and air-side controller adapted to coordinate both the fuel and air-side control of an engine, sensing one or more parameters, and outputting a fuel profile signal and one or more air-side control signals for controlling at least a part of the fuel-side and at least a part of the air-side of the engine. By centrally coordinating both the fuel and air-side control of the engine, the system can be configured to anticipate future fuel and/or air-side needs of the engine, thus improving system response, performance, and/or emissions.
    Type: Grant
    Filed: March 30, 2005
    Date of Patent: October 2, 2007
    Assignee: Honeywell International Inc.
    Inventors: Gregory E. Stewart, Syed M. Shahed, Francesco Borrelli
  • Patent number: 7237381
    Abstract: A method for operating a turbocharged internal combustion engine having an after-treatment device for treating exhaust gas discharged from the turbocharger, wherein exhaust gas from the engine is passed through a variable-geometry mechanism for regulating power produced by the turbine.
    Type: Grant
    Filed: April 25, 2005
    Date of Patent: July 3, 2007
    Assignee: Honeywell International, Inc.
    Inventors: Soumitri N. Kolavennu, Syed M Shahed
  • Patent number: 7182075
    Abstract: A flow control mechanism connected to the intake and exhaust systems of an engine. The mechanism may achieve recirculation of exhaust gases despite varying differential pressures or delta pressures between the systems, particularly since intake pressures may often exceed exhaust pressures. Pressure sensors may be situated proximate to the input and output of the flow control mechanism. There may a flow sensor proximate to the flow control mechanism. Cylinder pressure or pulse sensors may be situated in or about the engine. A processor may be connected to various sensors and provide prompt active control of a valve or like device in the flow control mechanism. Such valve may operate sufficiently quickly so as to prevent backflow from the intake system into the exhaust system upon sudden pressure changes in the systems. The quickness of the active valve control may also permit recirculating stipulated amounts of exhaust gas to each cylinder.
    Type: Grant
    Filed: December 7, 2004
    Date of Patent: February 27, 2007
    Assignee: Honeywell International Inc.
    Inventors: Syed M. Shahed, Gregory J. Hampson
  • Patent number: 7155334
    Abstract: Systems and methods for controlling an engine using feedback from one or more sensors are disclosed. An illustrative control system for controlling a diesel engine may include one or more post-combustion sensors adapted to directly sense at least one constituent of exhaust gasses emitted from the exhaust manifold of the engine, and a state observer for estimating the internal state of the diesel engine based on feedback signals received from the post-combustion sensors and from subsequent use of the estimated state in a controller that sends the actuator setpoints. The post-combustion sensors can be configured to directly measure emissions such as oxides of nitrogen (NOx) and/or particulate matter (PM) within the exhaust stream, and provide such information to a state observer that, in turn, updates an internal dynamical state based on these measurements.
    Type: Grant
    Filed: September 29, 2005
    Date of Patent: December 26, 2006
    Assignee: Honeywell International Inc.
    Inventors: Gregory E. Stewart, Soumitri N. Kolavennu, Francesco Borrelli, Gregory J. Hampson, Syed M. Shahed, Tariq Samad, Michael L. Rhodes
  • Patent number: 7127935
    Abstract: A sensor system for detecting the presence of at least one specific component in a fluid medium such as an exhaust gas. A sensor is mounted in a sensor body for detecting the presence of at least one specific component and providing a representative signal that is transmitted to a remote receiver for processing. A power source such as a thermopile provides power for the sensor and the transmitter. Preferred are sensors that detect a plurality of different components in the gas and provide a distinct signal for each component. A preferred transmitter is designed to transmit at a low duty cycle so as to conserve power. A preferred sensor is electronic, has the capability for self-diagnostics and self-calibration, and causes a change in current when exposed to the component, such as a functionalized field effect transistor.
    Type: Grant
    Filed: February 7, 2005
    Date of Patent: October 31, 2006
    Assignee: Honeywell International Inc.
    Inventors: Ulrich Bonne, Rajiv R. Singh, Syed M. Shahed, Richard A. Kirkpatrick, II, Aziz Rahman, Yue Liu
  • Patent number: 6647724
    Abstract: Exemplary methods, devices and/or system for enhancing engine performance through use of one or more compressors and/or one or more turbines. An exemplary system includes an electric compressor to boost intake charge pressure supplied to an internal combustion engine; an electric turbine to generate electrical power from exhaust received from the internal combustion engine; and an electric power control to provide electrical power from a power storage to the electric compressor upon a request for boost and to provide electrical power generated by the electric turbine to the electric compressor after a request for boost and upon a depletion of the power storage to a predetermined power storage level. Various other exemplary methods, devices and/or systems are also disclosed.
    Type: Grant
    Filed: July 30, 2002
    Date of Patent: November 18, 2003
    Assignee: Honeywell International Inc.
    Inventors: Steven Don Arnold, Syed M. Shahed
  • Patent number: RE44452
    Abstract: Systems and methods for using pedal position and/or pedal change rate in the fuel side and/or air side control of an engine. By knowing the pedal position and/or pedal rate, an engine controller may anticipate future fuel and/or air needs of the engine, and adjust the fuel profile and/or air profile to meet those anticipated needs. This may help improve the responsiveness, performance and emissions of the engine.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: August 27, 2013
    Assignee: Honeywell International Inc.
    Inventors: Gregory Stewart, Syed M. Shahed, Francesco Borrelli, Gregory J. Hampson