Patents by Inventor Syed Masood
Syed Masood has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12213420Abstract: This disclosure concerns methods and compositions for identifying canola plants that have a blackleg resistant phenotype. Some embodiments concern molecular markers to identify, select, and/or construct blackleg resistant plants and germplasm, or to identify and counter-select plants that are susceptible or have low resistance to blackleg disease. Some embodiments concern molecular markers to identify, select, and/or construct blackleg resistant plants that carry the Rlm7 gene. This disclosure also concerns canola plants comprising a blackleg resistant phenotype that are generated by methods utilizing at least one marker described herein.Type: GrantFiled: August 13, 2019Date of Patent: February 4, 2025Assignee: CORTEVA AGRISCIENCE, LLCInventors: Syed Masood Rizvi, Muhammad Tahir, Shunxue Tang, Jianwei Zhao, Jinhua Xiao, Gregory Gingera
-
Publication number: 20230248871Abstract: The present invention relates to a system (100) for IOT based vertical autoclave machine. The system (100) comprises a plurality of sensors, a control unit, a memory, a digital temperature indicator, a water level indicator, a pressure indicator a digital timer, a cloud and a user interface. The plurality of sensors used to measure the sterilization parameters of autoclave machine. The control unit allows to set the sterilization temperature, pressure and water level of autoclave machine. The digital temperature indicator used to display the temperature of machine accurately. The water level indicator displays the volume of water inside the chamber of machine. The pressure indicator shows the pressure inside the machine for sterilization. The power supply used to provide supply to the system. The cloud enables storing data and files on the internet of autoclave machine. The user interface allows interaction of user with application or with website.Type: ApplicationFiled: April 17, 2023Publication date: August 10, 2023Inventors: Surya Kalyan Chakravarthy Nidamanuri, Jafar Ali Ibrahim Syed Masood, Sasmita Samanta
-
Patent number: 11713490Abstract: A method for identifying a quantitative trait locus associated with desirable nutritional traits in canola includes: analyzing a population of canola plants or germplasm for desirable nutritional traits; determining the genotype of the canola plants or germplasm using at least one marker selected from the group consisting of SEQ ID NO:1 through SEQ ID NO:111; mapping the canola plants or germplasm for the presence of a quantitative trait locus (QTL) associated with the markers; and associating the QTL with the desirable nutritional trait. An isolated and/or recombinant nucleic acid includes a sequence associated with a quantitative trait locus (QTL), wherein the QTL is associated with a desirable nutritional trait in a canola plant or germplasm and wherein the QTL is further associated with at least one marker selected from the group consisting of SEQ ID NO:1 through SEQ ID NO:111.Type: GrantFiled: October 6, 2020Date of Patent: August 1, 2023Assignee: CORTEVA AGRISCIENCE LLCInventors: Shunxue Tang, Van L. Ripley, Thomas G. Patterson, Michelle Wiggins, Joshua A. Flook, Cherie Ochsenfeld, Daniel Garcia, Syed Masood Rizvi, Ryan Preuss, Donna Carolynn Knievel, Zoe Christina Ehlert, Steve Rounsley, Muhammad Tahir
-
Publication number: 20220017975Abstract: This disclosure concerns methods and compositions for identifying canola plants that have a low fiber content trait. Some embodiments concern a chromosomal interval and a quantitative trait locus associated with low fiber content in canola plants or germplasm. Some embodiments concern molecular markers to identify, select, and/or construct low fiber content canola plants and germplasm, or to identify and counter-select plants with relatively higher fiber content. This disclosure also concerns canola plants comprising a low fiber content trait that are generated by methods utilizing at least one marker described herein.Type: ApplicationFiled: December 13, 2019Publication date: January 20, 2022Applicant: Agrigenetics, Inc.Inventors: Ramesh BUYYARAPU, Thomas G. PATTERSON, Ryan L. PREUSS, Siva S. Ammiraju JETTY, Van L. RIPLEY, Syed Masood RIZVI, Steve ROUNSLEY, Muhammad TAHIR
-
MOLECULAR MARKERS FOR BLACKLEG RESISTANCE GENE RLM7 IN BRASSICA NAPUS, AND METHODS OF USING THE SAME
Publication number: 20210315177Abstract: This disclosure concerns methods and compositions for identifying canola plants that have a blackleg resistant phenotype. Some embodiments concern molecular markers to identify, select, and/or construct blackleg resistant plants and germplasm, or to identify and counter-select plants that are susceptible or have low resistance to blackleg disease. Some embodiments concern molecular markers to identify, select, and/or construct blackleg resistant plants that carry the Rlm7 gene. This disclosure also concerns canola plants comprising a blackleg resistant phenotype that are generated by methods utilizing at least one marker described herein.Type: ApplicationFiled: August 13, 2019Publication date: October 14, 2021Applicant: Dow AgroSciences LLCInventors: Syed Masood Rizvi, Muhammad Tahir, Shunxue Tang, Jianwei Zhao, Jinhua Xiao, Gregory Gingera -
Publication number: 20210092921Abstract: A method for identifying a quantitative trait locus associated with desirable nutritional traits in canola includes: analyzing a population of canola plants or germplasm for desirable nutritional traits; determining the genotype of the canola plants or germplasm using at least one marker selected from the group consisting of SEQ ID NO:1 through SEQ ID NO:111; mapping the canola plants or germplasm for the presence of a quantitative trait locus (QTL) associated with the markers; and associating the QTL with the desirable nutritional trait. An isolated and/or recombinant nucleic acid includes a sequence associated with a quantitative trait locus (QTL), wherein the QTL is associated with a desirable nutritional trait in a canola plant or germplasm and wherein the QTL is further associated with at least one marker selected from the group consisting of SEQ ID NO:1 through SEQ ID NO:111.Type: ApplicationFiled: October 6, 2020Publication date: April 1, 2021Applicant: Dow AgroSciences LLCInventors: Shunxue Tang, Van L. Ripley, Thomas G. Patterson, Michelle Wiggins, Joshua A. Flook, Cherie Ochsenfeld, Daniel Garcia, Syed Masood Rizvi, Ryan Preuss, Donna Carolynn Knievel, Zoe Christina Ehlert, Steve Rounsley, Muhammad Tahir
-
Patent number: 10791692Abstract: A method for identifying a quantitative trait locus associated with desirable nutritional traits in canola includes: analyzing a population of canola plants or germplasm for desirable nutritional traits; determining the genotype of the canola plants or germplasm using at least one marker selected from the group consisting of SEQ ID NO:1 through SEQ ID NO:111; mapping the canola plants or germplasm for the presence of a quantitative trait locus (QTL) associated with the markers; and associating the QTL with the desirable nutritional trait. An isolated and/or recombinant nucleic acid includes a sequence associated with a quantitative trait locus (QTL), wherein the QTL is associated with a desirable nutritional trait in a canola plant or germplasm and wherein the QTL is further associated with at least one marker selected from the group consisting of SEQ ID NO:1 through SEQ ID NO:111.Type: GrantFiled: December 18, 2015Date of Patent: October 6, 2020Assignee: Dow AgroSciences LLCInventors: Shunxue Tang, Van L. Ripley, Thomas G. Patterson, Michelle Wiggins, Joshua A. Flook, Cherie Ochsenfeld, Daniel Garcia, Syed Masood Rizvi, Muhammad Tahir, Ryan Preuss, Donna Carolynn Knievel, Steve Rounsley, Zoe Christina Ehlert
-
Publication number: 20170332593Abstract: A method for identifying a quantitative trait locus associated with desirable nutritional traits in canola includes: analyzing a population of canola plants or germplasm for desirable nutritional traits; determining the genotype of the canola plants or germplasm using at least one marker selected from the group consisting of SEQ ID NO:1 through SEQ ID NO:111; mapping the canola plants or germplasm for the presence of a quantitative trait locus (QTL) associated with the markers; and associating the QTL with the desirable nutritional trait. An isolated and/or recombinant nucleic acid includes a sequence associated with a quantitative trait locus (QTL), wherein the QTL is associated with a desirable nutritional trait in a canola plant or germplasm and wherein the QTL is further associated with at least one marker selected from the group consisting of SEQ ID NO:1 through SEQ ID NO:111.Type: ApplicationFiled: December 18, 2015Publication date: November 23, 2017Inventors: Shunxue Tang, Van Ripley, Tom G. Patterson, Michelle Wiggins, Josh Flook, Cherie Ochsenfeld, Daniel Garcia, Syed Masood Rizvi, Muhammad Tahir, Ryan Preuss, Donna Knievel, Steve Rounsley, Zoe Ehlert
-
Patent number: 7904037Abstract: An exemplary embodiment of the present invention described and shown in the specification and drawings is a transceiver with a receiver, a transmitter, a local oscillator (LO) generator, a controller, and a self-testing unit. All of these components can be packaged for integration into a single IC including components such as filters and inductors. The controller for adaptive programming and calibration of the receiver, transmitter and LO generator. The self-testing unit generates is used to determine the gain, frequency characteristics, selectivity, noise floor, and distortion behavior of the receiver, transmitter and LO generator. It is emphasized that this abstract is provided to comply with the rules requiring an abstract which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or the meaning of the claims.Type: GrantFiled: November 18, 2008Date of Patent: March 8, 2011Assignee: Broadcom CorporationInventors: Ahmadreza Rofougaran, Maryam Rofougaran, Jacob Rael, Syed Masood, Brima Ibrahim, Hung-Ming Chien, Stephen Wu, Meng-An Pan
-
Publication number: 20100013211Abstract: An identification tag is provided that includes an elongate strip of flexible material having a top surface, a bottom surface, a first end and a second end. The identification tag further includes adhesive material and a label, the label being configured such that information may be added thereto. The strip of flexible material may be configured to wrap around about itself to produce a generally circular shape.Type: ApplicationFiled: July 16, 2008Publication date: January 21, 2010Inventor: Syed Masood Ahmed
-
Publication number: 20090137213Abstract: An exemplary embodiment of the present invention described and shown in the specification and drawings is a transceiver with a receiver, a transmitter, a local oscillator (LO) generator, a controller, and a self-testing unit. All of these components can be packaged for integration into a single IC including components such as filters and inductors. The controller for adaptive programming and calibration of the receiver, transmitter and LO generator. The self-testing unit generates is used to determine the gain, frequency characteristics, selectivity, noise floor, and distortion behavior of the receiver, transmitter and LO generator. It is emphasized that this abstract is provided to comply with the rules requiring an abstract which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or the meaning of the claims.Type: ApplicationFiled: November 18, 2008Publication date: May 28, 2009Applicant: Broadcom CorporationInventors: Ahmadreza Rofougaran, Maryam Rofougaran, Jacob Rael, Syed Masood, Brima Ibrahim, Hung-Ming Chien, Stephen Wu, Meng-An Pan
-
Patent number: 7463868Abstract: An exemplary embodiment of the present invention described and shown in the specification and drawings is a transceiver with a receiver, a transmitter, a local oscillator (LO) generator, a controller, and a self-testing unit. All of these components can be packaged for integration into a single IC including components such as filters and inductors. The controller for adaptive programming and calibration of the receiver, transmitter and LO generator. The self-testing unit generates is used to determine the gain, frequency characteristics, selectivity, noise floor, and distortion behavior of the receiver, transmitter and LO generator. It is emphasized that this abstract is provided to comply with the rules requiring an abstract which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or the meaning of the claims.Type: GrantFiled: April 19, 2005Date of Patent: December 9, 2008Assignee: Broadcom CorporationInventors: Ahmadreza Rofougaran, Maryam Rofougaran, Jacob Rael, Syed Masood, Brima Ibrahim, Hung-Ming Chien, Stephen Wu, Meng-An Pan
-
Patent number: 6961546Abstract: An exemplary embodiment of the present invention described and shown in the specification and drawings is a transceiver with a receiver, a transmitter, a local oscillator (LO) generator, a controller, and a self-testing unit. All of these components can be packaged for integration into a single IC including components such as filters and inductors. The controller for adaptive programming and calibration of the receiver, transmitter and LO generator. The self-testing unit generates is used to determine the gain, frequency characteristics, selectivity, noise floor, and distortion behavior of the receiver, transmitter and LO generator. It is emphasized that this abstract is provided to comply with the rules requiring an abstract which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or the meaning of the claims.Type: GrantFiled: October 27, 2000Date of Patent: November 1, 2005Assignee: Broadcom CorporationInventors: Ahmadreza Rofougaran, Maryam Rofougaran, Jacob Rael, Syed Masood, Brima Ibrahim, Hung-Ming Chien, Stephen Wu, Meng-An Pan
-
Publication number: 20050186930Abstract: An exemplary embodiment of the present invention described and shown in the specification and drawings is a transceiver with a receiver, a transmitter, a local oscillator (LO) generator, a controller, and a self-testing unit. All of these components can be packaged for integration into a single IC including components such as filters and inductors. The controller for adaptive programming and calibration of the receiver, transmitter and LO generator. The self-testing unit generates is used to determine the gain, frequency characteristics, selectivity, noise floor, and distortion behavior of the receiver, transmitter and LO generator. It is emphasized that this abstract is provided to comply with the rules requiring an abstract which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or the meaning of the claims.Type: ApplicationFiled: April 19, 2005Publication date: August 25, 2005Inventors: Ahmadreza Rofougaran, Maryam Rofougaran, Jacob Rael, Syed Masood, Brima Ibrahim, Hung-Ming Chien, Stephen Wu, Meng-An Pan
-
Publication number: 20010024685Abstract: This invention is a substrate with a protective multicomponent coating, and a method for forming such a substrate by the steps of applying a coating solution to the substrate, and firing the substrate at a temperature greater than 450° C., where the coating solution includes a coating solvent; a SiO2 precursor being a silicon compound having at least one hydrolyzable group; a glass oxide precursor being a compound of an element selected from Group III or Group IV of the periodic table; and a network modifier precursor being a compound of an element selected from Group I or Group II of the periodic table. The invention is also related to the coating solution employed in the method of the invention.Type: ApplicationFiled: March 15, 2001Publication date: September 27, 2001Inventors: Jonathan M. Boulton, Syed Masood Hassan, Catherine A. Getz