Patents by Inventor Sylvain Gwizdala

Sylvain Gwizdala has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8236453
    Abstract: The invention provides a new route for the synthesis of carbon-coated powders having the olivine or NASICON structure, which form promising classes of active products for the manufacture of rechargeable lithium batteries. Carbon-coating of the powder particles is necessary to achieve good performances because of the rather poor electronic conductivity of said structures. For the preparation of coated LiFePO4, sources of Li, Fe and phosphate are dissolved in an aqueous solution together with a polycarboxylic acid and a polyhydric alcohol. Upon water evaporation, polyesterification occurs while a mixed precipitate is formed containing Li, Fe and phosphate. The resin-encapsulated mixture is then heat treated at 700° C. in a reducing atmosphere. This results in the production of a fine powder consisting of an olivine LiFePO4, phase, coated with conductive carbon.
    Type: Grant
    Filed: March 8, 2011
    Date of Patent: August 7, 2012
    Assignees: Umicore, Le Centre National de la Recherche Scientifique
    Inventors: Albane Audemer, Calin Wurm, Mathieu Morcrette, Sylvain Gwizdala, Christian Masquelier
  • Publication number: 20110212365
    Abstract: The invention provides a new route for the synthesis of carbon-coated powders having the olivine or NASICON structure, which form promising classes of active products for the manufacture of rechargeable lithium batteries. Carbon-coating of the powder particles is necessary to achieve good performances because of the rather poor electronic conductivity of said structures. For the preparation of coated LiFePO4, sources of Li, Fe and phosphate are dissolved in an aqueous solution together with a polycarboxylic acid and a polyhydric alcohol. Upon water evaporation, polyesterification occurs while a mixed precipitate is formed containing Li, Fe and phosphate. The resin-encapsulated mixture is then heat treated at 700° C. in a reducing atmosphere. This results in the production of a fine powder consisting of an olivine LiFePO4 phase, coated with conductive carbon.
    Type: Application
    Filed: March 8, 2011
    Publication date: September 1, 2011
    Applicants: UMICORE, LE CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
    Inventors: Albane AUDEMER, Calin WURM, Mathieu MORCRETTE, Sylvain GWIZDALA, Christian MASQUELIER
  • Patent number: 7923154
    Abstract: The invention provides a new route for the synthesis of carbon-coated powders having the olivine or NASICON structure, which form promising classes of active products for the manufacture of rechargeable lithium batteries. Carbon-coating of the powder particles is necessary to achieve good performances because of the rather poor electronic conductivity of said structures. For the preparation of coated LiFePO4, sources of Li, Fe and phosphate are dissolved in an aqueous solution together with a polycarboxylic acid and a polyhydric alcohol. Upon water evaporation, polyesterification occurs while a mixed precipitate is formed containing Li, Fe and phosphate. The resin-encapsulated mixture is then heat treated at 700° C. in a reducing atmosphere. This results in the production of a fine powder consisting of an olivine LiFePO4 phase, coated with conductive carbon.
    Type: Grant
    Filed: November 14, 2008
    Date of Patent: April 12, 2011
    Assignees: Umicore, Le Centre National de la Recherche Scientifique
    Inventors: Albane Audemer, Calin Wurm, Mathieu Morcrette, Sylvain Gwizdala, Christian Masquelier
  • Patent number: 7670721
    Abstract: Methods of manufacture and use of phosphates of transition metals are described as positive electrodes for secondary lithium batteries, including a process for the production of LiMPO4 with controlled size and morphology, M being FexCoyNizMnw, where 0?x?1, 0?y?1, 0?w?1, and x+y+z+w=1. According to an exemplary embodiment, a process is described for the manufacture of LiFePO4 including the steps of providing an equimolar aqueous solution of Li1+, Fe3+ and PO43?, evaporating water from the solution to produce a solid mixture, decomposing the solid mixture at a temperature of below 500° C. to form a pure homogeneous Li and Fe phosphate precursor, and annealing the precursor at a temperature of less than 800° C. in a reducing atmosphere to produce the LiFePO4 powder. The obtained powders can have a particle size of less than 1 ?m, and can provide superior electrochemical performance when mixed for an appropriate time with an electrically conductive powder.
    Type: Grant
    Filed: April 11, 2007
    Date of Patent: March 2, 2010
    Assignees: Le Centre National de la Rocherche Scientifique, Umicore
    Inventors: Calin Wurm, Mathieu Morcrette, Sylvain Gwizdala, Christian Masquelier
  • Patent number: 7618747
    Abstract: The invention provides a new route for the synthesis of carbon-coated powders having the olivine or NASICON structure, which form promising classes of active products for the manufacture of rechargeable lithium batteries. Carbon-coating of the powder particles is necessary to achieve good performances because of the rather poor electronic conductivity of said structures. For the preparation of coated LiFePO4, sources of Li, Fe and phosphate are dissolved in an aqueous solution together with a polycarboxylic acid and a polyhydric alcohol. Upon water evaporation, polyesterification occurs while a mixed precipitate is formed containing Li, Fe and phosphate. The resin-encapsulated mixture is then heat treated at 700° C. in a reducing atmosphere. This results in the production of a fine powder consisting of an olivine LiFePO4 phase, coated with conductive carbon.
    Type: Grant
    Filed: June 19, 2003
    Date of Patent: November 17, 2009
    Assignees: Umicore, Le Centre National de la Recherche Scientifique
    Inventors: Albane Audemer, Calin Wurm, Mathieu Morcrette, Sylvain Gwizdala, Christian Masquelier
  • Publication number: 20090111024
    Abstract: Methods of manufacture and use of phosphates of transition metals are described as positive electrodes for secondary lithium batteries, including a process for the production of LiMPO4 with controlled size and morphology, M being FexCoyNizMnw, where 0?x?1, 0?y?1, 0?w?1, and x+y+z+w=1. According to an exemplary embodiment, a process is described for the manufacture of LiFePO4 including the steps of providing an equimolar aqueous solution of Li1+, Fe3+ and PO43?, evaporating water from the solution to produce a solid mixture, decomposing the solid mixture at a temperature of below 500° C. to form a pure homogeneous Li and Fe phosphate precursor, and annealing the precursor at a temperature of less than 800° C. in a reducing atmosphere to produce the LiFePO4 powder. The obtained powders can have a particle size of less than 1 ?m, and can provide superior electrochemical performance when mixed for an appropriate time with an electrically conductive powder.
    Type: Application
    Filed: April 11, 2007
    Publication date: April 30, 2009
    Applicants: Le Centre National de la Recherche Scientifique, Umicore
    Inventors: Calin Wurm, Mathieu Morcrette, Sylvain Gwizdala, Christian Masquelier
  • Publication number: 20090072203
    Abstract: The invention provides a new route for the synthesis of carbon-coated powders having the olivine or NASICON structure, which form promising classes of active products for the manufacture of rechargeable lithium batteries. Carbon-coating of the powder particles is necessary to achieve good performances because of the rather poor electronic conductivity of said structures. For the preparation of coated LiFePO4, sources of Li, Fe and phosphate are dissolved in an aqueous solution together with a polycarboxylic acid and a polyhydric alcohol. Upon water evaporation, polyesterification occurs while a mixed precipitate is formed containing Li, Fe and phosphate. The resin-encapsulated mixture is then heat treated at 700° C. in a reducing atmosphere. This results in the production of a fine powder consisting of an olivine LiFePO4 phase, coated with conductive carbon.
    Type: Application
    Filed: November 14, 2008
    Publication date: March 19, 2009
    Applicants: Umicore, Le Centre National de la Recherche Scientifique
    Inventors: Albane AUDEMER, Calin Wurm, Mathieu Morcrette, Sylvain Gwizdala, Christian Masquelier
  • Patent number: 7371482
    Abstract: Methods of manufacture and use of phosphates of transition metals are described as positive electrodes for secondary lithium batteries, including a process for the production of LiMPO4 with controlled size and morphology, M being FexCoyNizMnw, where 0?x?1,0?y?1, 0?w?1, and x+y+z+w=1. According to an exemplary embodiment, a process is described for the manufacture of LiFePO4 including the steps of providing an equimolar aqueous solution of Li1+, Fe3+ and PO43?, evaporating water from the solution to produce a solid mixture, decomposing the solid mixture at a temperature of below 500° C. to form a pure homogeneous Li and Fe phosphate precursor, and annealing the precursor at a temperature of less than 800° C. in a reducing atmosphere to produce the LiFePO4 powder. The obtained powders can have a particle size of less than 1 ?m, and can provide superior electrochemical performance when mixed for an appropriate time with an electrically conductive powder.
    Type: Grant
    Filed: November 21, 2003
    Date of Patent: May 13, 2008
    Assignees: Le Centre National de la Recherche Scientifique, Umicore
    Inventors: Calin Wurm, Mathieu Morcrette, Sylvain Gwizdala, Christian Masquelier
  • Publication number: 20060035150
    Abstract: The invention provides a new route for the synthesis of carbon-coated powders having the olivine or NASICON structure, which form promising classes of active products for the manufacture of rechargeable lithium batteries. Carbon-coating of the powder particles is necessary to achieve good performances because of the rather poor electronic conductivity of said structures. For the preparation of coated LiFePO4, sources of Li, Fe and phosphate are dissolved in an aqueous solution together with a polycarboxylic acid and a polyhydric alcohol. Upon water evaporation, polyesterification occurs while a mixed precipitate is formed containing Li, Fe and phosphate. The resin-encapsulated mixture is then heat treated at 700° C. in a reducing atmosphere. This results in the production of a fine powder consisting of an olivine LiFePO4 phase, coated with conductive carbon.
    Type: Application
    Filed: June 19, 2003
    Publication date: February 16, 2006
    Inventors: Albane Audemer, Calin Wurm, Mathieu Morcrette, Sylvain Gwizdala, Christain Masquelier
  • Publication number: 20040175614
    Abstract: Methods of manufacture and use of phosphates of transition metals are described as positive electrodes for secondary lithium batteries, including a process for the production of LiMPO4 with controlled size and morphology, M being FexCoyNizMnw, where 0≦x≦1,0≦y≦1, 0≦w≦1, and x+y+z+w=1. According to an exemplary embodiment, a process is described for the manufacture of LiFePO4 including the steps of providing an equimolar aqueous solution of Li1+, Fe3+ and PO43−, evaporating water from the solution to produce a solid mixture, decomposing the solid mixture at a temperature of below 500° C. to form a pure homogeneous Li and Fe phosphate precursor, and annealing the precursor at a temperature of less than 800° C. in a reducing atmosphere to produce the LiFePO4 powder.
    Type: Application
    Filed: November 21, 2003
    Publication date: September 9, 2004
    Inventors: Calin Wurm, Mathieu Morcrette, Sylvain Gwizdala, Christian Masquelier