Patents by Inventor Sylvia H. Florez

Sylvia H. Florez has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9552837
    Abstract: In one general embodiment, a magnetic medium includes a recording layer having at least three exchange control layers each having a magnetic moment less than 100 emu/cc, and four magnetic layers separated from one another by the exchange control layers. An uppermost of the magnetic layers is doped with oxygen. In another general embodiment, a magnetic medium includes a recording layer having at least three exchange control layers and four magnetic layers separated from one another by the exchange control layers. An uppermost of the magnetic layers has an oxygen content of greater than 0.5 vol %. An average pitch of magnetic grains in a lowermost of the magnetic layers is 9 nm or less. A lowermost of the magnetic layers has an oxide content of at least 20 vol %.
    Type: Grant
    Filed: November 1, 2013
    Date of Patent: January 24, 2017
    Assignee: HGST Netherlands B.V.
    Inventors: Hoa V. Do, Sylvia H. Florez, Yoshihiro Ikeda, Kentaro Takano, Bruce D. Terris, Qing Zhu
  • Publication number: 20150124350
    Abstract: In one general embodiment, a magnetic medium includes a recording layer having at least three exchange control layers each having a magnetic moment less than 100 emu/cc, and four magnetic layers separated from one another by the exchange control layers. An uppermost of the magnetic layers is doped with oxygen. In another general embodiment, a magnetic medium includes a recording layer having at least three exchange control layers and four magnetic layers separated from one another by the exchange control layers. An uppermost of the magnetic layers has an oxygen content of greater than 0.5 vol %. An average pitch of magnetic grains in a lowermost of the magnetic layers is 9 nm or less. A lowermost of the magnetic layers has an oxide content of at least 20 vol %.
    Type: Application
    Filed: November 1, 2013
    Publication date: May 7, 2015
    Applicant: HGST Netherlands B.V.
    Inventors: Hoa V. Do, Sylvia H. Florez, Yoshihiro Ikeda, Kentaro Takano, Bruce D. Terris, Qing Zhu
  • Patent number: 8199553
    Abstract: A three-dimensional nonvolatile memory array device includes a plurality of memory elements and a memory controller. The plurality of memory elements each have a stack of a plurality of bits, which in turn each include a magnetic free layer, a magnetic pinned layer, and a non-magnetic layer. The magnetic free layer is configured to alternate its magnetization orientation based on a radio frequency current being at a resonant frequency of the magnetic free layer and on a magnetic field being applied to the magnetic free layer. The magnetic pinned layer has a specific magnetization orientation. The non-magnetic layer is located in between the magnetic free layer and the magnetic pinned layer. The memory controller is in communication with each of the plurality of memory elements, and configured to write data to and read data from the plurality of bits in the memory elements.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: June 12, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Wenyu Chen, Sylvia H. Florez Marino, Liesl Folks, Bruce D. Terris
  • Publication number: 20110149632
    Abstract: A three-dimensional nonvolatile memory array device includes a plurality of memory elements and a memory controller. The plurality of memory elements each have a stack of a plurality of bits, which in turn each include a magnetic free layer, a magnetic pinned layer, and a non-magnetic layer. The magnetic free layer is configured to alternate its magnetization orientation based on a radio frequency current being at a resonant frequency of the magnetic free layer and on a magnetic field being applied to the magnetic free layer. The magnetic pinned layer has a specific magnetization orientation. The non-magnetic layer is located in between the magnetic free layer and the magnetic pinned layer. The memory controller is in communication with each of the plurality of memory elements, and configured to write data to and read data from the plurality of bits in the memory elements.
    Type: Application
    Filed: December 17, 2009
    Publication date: June 23, 2011
    Inventors: Wenyu Chen, Sylvia H. Florez Marino, Liesl Folks, Bruce D. Terris