Patents by Inventor Sylvia Jia Yun Lewis

Sylvia Jia Yun Lewis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11143605
    Abstract: A system and a method use x-ray fluorescence to analyze a specimen by illuminating a specimen with an incident x-ray beam having a near-grazing incident angle relative to a surface of the specimen and while the specimen has different rotational orientations relative to the incident x-ray beam. Fluorescence x-rays generated by the specimen in response to the incident x-ray beam are collected while the specimen has the different rotational orientations.
    Type: Grant
    Filed: September 1, 2020
    Date of Patent: October 12, 2021
    Assignee: Sigray, Inc.
    Inventors: Wenbing Yun, Sylvia Jia Yun Lewis, Janos Kirz, Benjamin Donald Stripe
  • Publication number: 20210247334
    Abstract: An x-ray mirror optic includes a plurality of surface segments with quadric cross-sections having differing quadric parameters. The quadric cross-sections of the surface segments share a common axis and are configured to reflect x-rays in a plurality of reflections along a single optical axis or in a scattering plane defined as containing an incident x-ray and a corresponding reflected x-ray.
    Type: Application
    Filed: February 5, 2021
    Publication date: August 12, 2021
    Inventors: Wenbing Yun, Sylvia Jia Yun Lewis, Janos Kirz
  • Patent number: 10991538
    Abstract: An x-ray target, x-ray source, and x-ray system are provided. The x-ray target includes a thermally conductive substrate comprising a surface and at least one structure on or embedded in at least a portion of the surface. The at least one structure includes a thermally conductive first material in thermal communication with the substrate. The first material has a length along a first direction parallel to the portion of the surface in a range greater than 1 millimeter and a width along a second direction parallel to the portion of the surface and perpendicular to the first direction. The width is in a range of 0.2 millimeter to 3 millimeters. The at least one structure further includes at least one layer over the first material. The at least one layer includes at least one second material different from the first material. The at least one layer has a thickness in a range of 2 microns to 50 microns. The at least one second material is configured to generate x-rays upon irradiation by electrons.
    Type: Grant
    Filed: May 5, 2020
    Date of Patent: April 27, 2021
    Assignee: Sigray, Inc.
    Inventors: Wenbing Yun, Sylvia Jia Yun Lewis, Janos Kirz, William Henry Hansen
  • Patent number: 10976273
    Abstract: An x-ray spectrometer system includes an x-ray source, an x-ray optical system, a mount, and an x-ray spectrometer. The x-ray optical system is configured to receive, focus, and spectrally filter x-rays from the x-ray source to form an x-ray beam having a spectrum that is attenuated in an energy range above a predetermined energy and having a focus at a predetermined focal plane.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: April 13, 2021
    Assignee: Sigray, Inc.
    Inventors: Wenbing Yun, Srivatsan Seshadri, Janos Kirz, Sylvia Jia Yun Lewis
  • Patent number: 10962491
    Abstract: An x-ray optical filter includes at least one x-ray optical mirror configured to receive a plurality of x-rays having a first x-ray spectrum with a first intensity as a function of energy in a predetermined solid angle range and to separate at least some of the received x-rays by multilayer reflection or total external reflection into reflected x-rays and non-reflected x-rays and to form an x-ray beam including at least some of the reflected x-rays and/or at least some of the non-reflected x-rays. The x-ray beam has a second x-ray spectrum with a second intensity as a function of energy in the solid angle range, the second intensity greater than or equal to 50% of the first intensity across a first continuous energy range at least 3 keV wide, the second intensity less than or equal to 10% of the first intensity across a second continuous energy range at least 100 eV wide.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: March 30, 2021
    Assignee: Sigray, Inc.
    Inventors: Wenbing Yun, Janos Kirz, Benjamin Donald Stripe, Sylvia Jia Yun Lewis
  • Publication number: 20210080408
    Abstract: A system and a method use x-ray fluorescence to analyze a specimen by illuminating a specimen with an incident x-ray beam having a near-grazing incident angle relative to a surface of the specimen and while the specimen has different rotational orientations relative to the incident x-ray beam. Fluorescence x-rays generated by the specimen in response to the incident x-ray beam are collected while the specimen has the different rotational orientations.
    Type: Application
    Filed: September 1, 2020
    Publication date: March 18, 2021
    Inventors: Wenbing Yun, Sylvia Jia Yun Lewis, Janos Kirz, Benjamin Donald Stripe
  • Publication number: 20200350138
    Abstract: An x-ray target, x-ray source, and x-ray system are provided. The x-ray target includes a thermally conductive substrate comprising a surface and at least one structure on or embedded in at least a portion of the surface. The at least one structure includes a thermally conductive first material in thermal communication with the substrate. The first material has a length along a first direction parallel to the portion of the surface in a range greater than 1 millimeter and a width along a second direction parallel to the portion of the surface and perpendicular to the first direction. The width is in a range of 0.2 millimeter to 3 millimeters. The at least one structure further includes at least one layer over the first material. The at least one layer includes at least one second material different from the first material. The at least one layer has a thickness in a range of 2 microns to 50 microns. The at least one second material is configured to generate x-rays upon irradiation by electrons.
    Type: Application
    Filed: May 5, 2020
    Publication date: November 5, 2020
    Inventors: Wenbing Yun, Sylvia Jia Yun Lewis, Janos Kirz, William Henry Hansen
  • Patent number: 10658145
    Abstract: An x-ray target, x-ray source, and x-ray system are provided. The x-ray target includes a thermally conductive substrate comprising a surface and at least one structure on or embedded in at least a portion of the surface. The at least one structure includes a thermally conductive first material in thermal communication with the substrate. The first material has a length along a first direction parallel to the portion of the surface in a range greater than 1 millimeter and a width along a second direction parallel to the portion of the surface and perpendicular to the first direction. The width is in a range of 0.2 millimeter to 3 millimeters. The at least one structure further includes at least one layer over the first material. The at least one layer includes at least one second material different from the first material. The at least one layer has a thickness in a range of 2 microns to 50 microns.
    Type: Grant
    Filed: July 22, 2019
    Date of Patent: May 19, 2020
    Assignee: Sigray, Inc.
    Inventors: Wenbing Yun, Sylvia Jia Yun Lewis, Janos Kirz, William Henry Hansen
  • Patent number: 10656105
    Abstract: An x-ray source and an x-ray interferometry system utilizing the x-ray source are provided. The x-ray source includes a target that includes a substrate and a plurality of structures. The substrate includes a thermally conductive first material and a first surface. The plurality of structures is on or embedded in at least a portion of the first surface. The structures are separate from one another and are in thermal communication with the substrate. The structures include at least one second material different from the first material, the at least one second material configured to generate x-rays upon irradiation by electrons having energies in an energy range of 0.5 keV to 160 keV. The x-ray source further includes an electron source configured to generate the electrons and to direct the electrons to impinge the target and to irradiate at least some of the structures along a direction that is at a non-zero angle relative to a surface normal of the portion of the first surface.
    Type: Grant
    Filed: July 29, 2019
    Date of Patent: May 19, 2020
    Assignee: Sigray, Inc.
    Inventors: Wenbing Yun, Sylvia Jia Yun Lewis, Janos Kirz, David Vine
  • Patent number: 10653376
    Abstract: An x-ray imaging system includes an x-ray source, a beam-splitting grating having a plurality of structures arranged in a two-dimensional periodic array, a stage configured to hold an object to be imaged, and an x-ray detector having a two-dimensional array of x-ray detecting elements and positioned to detect x-rays diffracted by the beam-splitting grating and perturbed by the object to be imaged.
    Type: Grant
    Filed: May 3, 2019
    Date of Patent: May 19, 2020
    Assignee: Sigray, Inc.
    Inventors: Wenbing Yun, Sylvia Jia Yun Lewis, Janos Kirz, Alan Francis Lyon
  • Publication number: 20200072770
    Abstract: An x-ray optical filter includes at least one x-ray optical mirror configured to receive a plurality of x-rays having a first x-ray spectrum with a first intensity as a function of energy in a predetermined solid angle range and to separate at least some of the received x-rays by multilayer reflection or total external reflection into reflected x-rays and non-reflected x-rays and to form an x-ray beam including at least some of the reflected x-rays and/or at least some of the non-reflected x-rays. The x-ray beam has a second x-ray spectrum with a second intensity as a function of energy in the solid angle range, the second intensity greater than or equal to 50% of the first intensity across a first continuous energy range at least 3 keV wide, the second intensity less than or equal to 10% of the first intensity across a second continuous energy range at least 100 eV wide.
    Type: Application
    Filed: August 29, 2019
    Publication date: March 5, 2020
    Inventors: Wenbing Yun, Janos Kirz, Benjamin Donald Stripe, Sylvia Jia Yun Lewis
  • Patent number: 10578566
    Abstract: Systems and methods for x-ray emission spectroscopy are provided in which at least one x-ray analyzer is curved and receives and diffracts fluorescence x-rays emitted from a sample, and at least one spatially-resolving x-ray detector receives the diffracted x-rays. The at least one x-ray analyzer and the at least one spatially-resolving x-ray detector are positioned on the Rowland circle. In some configurations, the fluorescence x-rays are emitted from the same surface of the sample that is irradiated by the x-rays from an x-ray source and the system has an off-Rowland circle geometry. In some other configurations, an x-ray optical train receives the fluorescence x-rays emitted from a sample impinged by electrons within an electron microscope and focuses at least some of the received fluorescence x-rays to a focal spot.
    Type: Grant
    Filed: April 1, 2019
    Date of Patent: March 3, 2020
    Assignee: Sigray, Inc.
    Inventors: Wenbing Yun, Srivatsan Seshadri, Sylvia Jia Yun Lewis, Janos Kirz
  • Publication number: 20200041428
    Abstract: An x-ray source and an x-ray interferometry system utilizing the x-ray source are provided. The x-ray source includes a target that includes a substrate and a plurality of structures. The substrate includes a thermally conductive first material and a first surface. The plurality of structures is on or embedded in at least a portion of the first surface. The structures are separate from one another and are in thermal communication with the substrate. The structures include at least one second material different from the first material, the at least one second material configured to generate x-rays upon irradiation by electrons having energies in an energy range of 0.5 keV to 160 keV. The x-ray source further includes an electron source configured to generate the electrons and to direct the electrons to impinge the target and to irradiate at least some of the structures along a direction that is at a non-zero angle relative to a surface normal of the portion of the first surface.
    Type: Application
    Filed: July 29, 2019
    Publication date: February 6, 2020
    Inventors: Wenbing Yun, Sylvia Jia Yun Lewis, Janos Kirz, David Vina
  • Publication number: 20200035440
    Abstract: An x-ray target, x-ray source, and x-ray system are provided. The x-ray target includes a thermally conductive substrate comprising a surface and at least one structure on or embedded in at least a portion of the surface. The at least one structure includes a thermally conductive first material in thermal communication with the substrate. The first material has a length along a first direction parallel to the portion of the surface in a range greater than 1 millimeter and a width along a second direction parallel to the portion of the surface and perpendicular to the first direction. The width is in a range of 0.2 millimeter to 3 millimeters. The at least one structure further includes at least one layer over the first material. The at least one layer includes at least one second material different from the first material. The at least one layer has a thickness in a range of 2 microns to 50 microns.
    Type: Application
    Filed: July 22, 2019
    Publication date: January 30, 2020
    Inventors: Wenbing Yun, Sylvia Jia Yun Lewis, Janos Kirz, William Henry Hansen
  • Patent number: 10466185
    Abstract: An x-ray interrogation system having one or more x-ray beams interrogates an object (i.e., object). A structured source producing an array of x-ray micro-sources can be imaged onto the object. Each of the one or more beams may have a high resolution, such as for example a diameter of about 15 microns or less, at the surface of the object. The illuminating one or more micro-beams can be high resolution in one dimension and/or two dimensions, and can be directed at the object to illuminate the object. The incident beam that illuminates the object has an energy that is greater than the x-ray fluorescence energy.
    Type: Grant
    Filed: February 14, 2019
    Date of Patent: November 5, 2019
    Assignee: SIGRAY, INC.
    Inventors: Wenbing Yun, Sylvia Jia Yun Lewis, Janos Kirz
  • Publication number: 20190302042
    Abstract: Systems and methods for x-ray emission spectroscopy are provided in which at least one x-ray analyzer is curved and receives and diffracts fluorescence x-rays emitted from a sample, and at least one spatially-resolving x-ray detector receives the diffracted x-rays. The at least one x-ray analyzer and the at least one spatially-resolving x-ray detector are positioned on the Rowland circle. In some configurations, the fluorescence x-rays are emitted from the same surface of the sample that is irradiated by the x-rays from an x-ray source and the system has an off-Rowland circle geometry. In some other configurations, an x-ray optical train receives the fluorescence x-rays emitted from a sample impinged by electrons within an electron microscope and focuses at least some of the received fluorescence x-rays to a focal spot.
    Type: Application
    Filed: April 1, 2019
    Publication date: October 3, 2019
    Inventors: Wenbing Yun, Srivatsan Seshadri, Sylvia Jia Yun Lewis, Janos Kirz
  • Patent number: 10416099
    Abstract: A method for performing x-ray absorption spectroscopy and an x-ray absorption spectrometer system to be used with a compact laboratory x-ray source to measure x-ray absorption of the element of interest in an object with both high spatial and high spectral resolution. The spectrometer system comprises a compact high brightness laboratory x-ray source, an optical train to focus the x-rays through an object to be examined, and a spectrometer comprising a single crystal analyzer (and, in some embodiments, also a mosaic crystal) to disperse the transmitted beam onto a spatially resolving x-ray detector. The high brightness/high flux x-ray source may have a take-off angle between 0 and 105 mrad. and be coupled to an optical train that collects and focuses the high flux x-rays to spots less than 500 micrometers, leading to high flux density.
    Type: Grant
    Filed: March 21, 2018
    Date of Patent: September 17, 2019
    Assignee: Sigray, Inc.
    Inventors: Wenbing Yun, Srivatsan Seshadri, Sylvia Jia Yun Lewis, Janos Kirz, Alan Francis Lyon, Benjamin Donald Stripe
  • Patent number: 10401309
    Abstract: This invention discloses a method and apparatus for x-ray techniques using structured x-ray illumination for examining material properties of an object. In particular, an object with one or more regions of interest (ROIs) having a particular shape, size, and pattern may be illuminated with an x-ray beam whose cross sectional beam profile corresponds to the shape, size and pattern of the ROIs, so that the x-rays of the beam primarily interact only with the ROIs. This allows a greater x-ray flux to be used, enhancing the signal from the ROI itself, while reducing unwanted signals from regions not in the ROI, improving signal-to-noise ratios and/or measurement throughput. This may be used with a number of x-ray measurement techniques, including x-ray fluorescence (XRF), x-ray diffraction (XRD), small angle x-ray scattering (SAXS), x-ray absorption fine-structure spectroscopy (XAFS), x-ray near edge absorption spectroscopy, and x-ray emission spectroscopy.
    Type: Grant
    Filed: June 5, 2016
    Date of Patent: September 3, 2019
    Assignee: Sigray, Inc.
    Inventors: Wenbing Yun, Sylvia Jia Yun Lewis, Janos Kirz
  • Publication number: 20190254616
    Abstract: An x-ray interferometric imaging system in which the x-ray source comprises a target having a plurality of structured coherent sub-sources of x-rays embedded in a thermally conducting substrate. The structures may be microstructures with lateral dimensions measured on the order of microns, and in some embodiments, the structures are arranged in a regular array. The system additionally comprises a beam-splitting grating G1 that establishes a Talbot interference pattern, which may be a ? or ?/2 phase-shifting grating, an x-ray detector to convert two-dimensional x-ray intensities into electronic signals, and in some embodiments, also comprises an additional analyzer grating G2 that may be placed in front of the detector to form additional interference fringes. Systems may also include a means to translate and/or rotate the relative positions of the x-ray source and the object under investigation relative to the beam splitting grating and/or the analyzer grating for tomography applications.
    Type: Application
    Filed: May 3, 2019
    Publication date: August 22, 2019
    Inventors: Wenbing Yun, Sylvia Jia yun Lewis, Janos Kirz, Alan Francis Lyon
  • Patent number: RE48612
    Abstract: An x-ray interferometric imaging system in which the x-ray source comprises a target having a plurality of structured coherent sub-sources of x-rays embedded in a thermally conducting substrate. The system additionally comprises a beam-splitting grating G1 that establishes a Talbot interference pattern, which may be a ? phase-shifting grating, and an x-ray detector to convert two-dimensional x-ray intensities into electronic signals. The system may also comprise a second analyzer grating G2 that may be placed in front of the detector to form additional interference fringes, a means to translate the second grating G2 relative to the detector. The system may additionally comprise an antiscattering grid to reduce signals from scattered x-rays. Various configurations of dark-field and bright-field detectors are also disclosed.
    Type: Grant
    Filed: July 26, 2019
    Date of Patent: June 29, 2021
    Assignee: Sigray, Inc.
    Inventors: Wenbing Yun, Sylvia Jia Yun Lewis, Janos Kirz