Patents by Inventor Sylvie Lafreniere

Sylvie Lafreniere has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11525066
    Abstract: A flake-less molecular ink suitable for printing (e.g. screen printing) conductive traces on a substrate has 30-60 wt % of a C8-C12 silver carboxylate and 0.1-10 wt % of a polymeric binder, or 5-75 wt % of bis(2-ethyl-1-hexylamine) copper (II) formate, bis(octylamine) copper (II) formate or tris(octylamine) copper (II) formate and 0.25-10 wt % of a polymeric binder, and balance of at least one organic solvent, wherein the binder has ethyl cellulose, and the ethyl cellulose has an average weight molecular weight in a range of 60,000-95,000 g/mol and a bimodal molecular weight distribution.
    Type: Grant
    Filed: November 24, 2020
    Date of Patent: December 13, 2022
    Assignees: National Research Council of Canada, Groupe Graham International Inc.
    Inventors: Arnold J. Kell, Sylvie Lafrenière, Chantal Paquet, Patrick Malenfant, Olga Mozenson
  • Patent number: 11161996
    Abstract: The present invention relates to an electronic device comprising a printed substrate comprising a trace of molecular ink thereon, the molecular ink being sintered to form a conductive metal trace forming the electronic device, wherein the molecular ink is chosen from a) a flake-less printable composition of 30-60 wt % of a C8-C12 silver carboxylate, 0.1-10 wt % of a polymeric binder and balance of at least one organic solvent, all weights based on total weight of the composition; or b) a flake-less printable composition of 5-75 wt % of bis(2-ethyl-1-hexylamine) copper (II) formate, bis(octylamine) copper (II) formate or tris(octylamine) copper (II) formate, 0.25-10 wt % of a polymeric binder and balance of at least one organic solvent, all weights based on total weight of the composition.
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: November 2, 2021
    Assignees: E2IP TECHNOLOGIES INC., NATIONAL RESEARCH COUNCIL OF CANADA, HER MAJESTY THE QUEEN IN RIGHT OF CANADA (...)
    Inventors: Xiangyang Liu, Olga Mozenson, Bhavana Deore, Chantal Paquet, Arnold Kell, Patrick Malenfant, Julie Ferrigno, Olivier Ferrand, Jian Xiong Hu, Sylvie Lafreniere, Reza Chaharmir, Jonathan Ethier, Khelifa Hettak, Jafar Shaker, Adrian Momciu
  • Publication number: 20210079248
    Abstract: A flake-less molecular ink suitable for printing (e.g. screen printing) conductive traces on a substrate has 30-60 wt % of a C8-C12 silver carboxylate and 0.1-10 wt % of a polymeric binder, or 5-75 wt % of bis(2-ethyl-1-hexylamine) copper (II) formate, bis(octylamine) copper (II) formate or tris(octylamine) copper (II) formate and 0.25-10 wt % of a polymeric binder, and balance of at least one organic solvent, wherein the binder has ethyl cellulose, and the ethyl cellulose has an average weight molecular weight in a range of 60,000-95,000 g/mol and a bimodal molecular weight distribution.
    Type: Application
    Filed: November 24, 2020
    Publication date: March 18, 2021
    Applicants: National Research Council of Canada, Groupe Graham International Inc.
    Inventors: Arnold J. KELL, Sylvie LAFRENIÈRE, Chantal PAQUET, Patrick MALENFANT, Olga MOZENSON
  • Patent number: 10883011
    Abstract: A flake-less molecular ink suitable for printing (e.g. screen printing) conductive traces on a substrate has 30-60 wt % of a C8-C12 silver carboxylate or 5-75 wt % of bis(2-ethyl-1-hexylamine) copper (II) formate, bis(octylamine) copper (II) formate or tris(octylamine) copper (II) formate, 0.1-10 wt % of a polymeric binder (e.g. ethyl cellulose) and balance of at least one organic solvent. Conductive traces formed with the molecular ink are thinner, have lower resistivity, have greater adhesion to a substrate than metal flake inks, have better print resolution and are up to 8 times less rough than metal flake inks. In addition, the shear force required to remove light emitting diodes bonded to the traces using Loctite 3880 is at least 1.3 times stronger than for commercially available flake-based inks.
    Type: Grant
    Filed: June 19, 2015
    Date of Patent: January 5, 2021
    Assignees: Groupe Graham International Inc., National Research Council of Canada
    Inventors: Arnold Kell, Sylvie Lafreniere, Chantal Paquet, Patrick Malenfant, Olga Mozenson
  • Publication number: 20200010707
    Abstract: A process for finishing a conductive metallic layer (e.g. a layer of copper metal) involves coating a molecular silver ink on the conductive metallic layer and decomposing the silver ink to form a solderable coating of silver metal on the conductive metallic layer. The molecular silver ink includes a silver carboxylate, a carrier and a polymeric binder. The process is additive and enables the cost-effective formation of a silver metal finish on conductive metallic layers, which both protects the conductive metallic layer from oxidation and further corrosion and allows soldering with lead and lead-free solders.
    Type: Application
    Filed: February 8, 2018
    Publication date: January 9, 2020
    Inventors: Sylvie LAFRENIÈRE, Bhavana DEORE, Chantal PAQUET, Arnold J. KELL, Patrick Roland Lucien MALENFANT
  • Publication number: 20190284422
    Abstract: The present invention relates to an electronic device comprising a printed substrate comprising a trace of molecular ink thereon, the molecular ink being sintered to form a conductive metal trace forming the electronic device, wherein the molecular ink is chosen from a) a flake-less printable composition of 30-60 wt % of a C8-C12 silver carboxylate, 0.1-10 wt % of a polymeric binder and balance of at least one organic solvent, all weights based on total weight of the composition; or b) a flake-less printable composition of 5-75 wt % of bis(2-ethyl-1-hexylamine) copper (II) formate, bis(octylamine) copper (II) formate or tris(octylamine) copper (II) formate, 0.25-10 wt % of a polymeric binder and balance of at least one organic solvent, all weights based on total weight of the composition.
    Type: Application
    Filed: October 25, 2017
    Publication date: September 19, 2019
    Applicants: GGI INTERNATIONAL, NATIONAL RESEARCH COUNCIL OF CANADA, HER MAJESTY THE QUEEN IN RIGHT OF CANADA (...)
    Inventors: Xiangyang LIU, Olga MOZENSON, Bhavana DEORE, Chantal PAQUET, Arnold KELL, Patrick MALENFANT, Julie FERRIGNO, Olivier FERRAND, Jian Xiong HU, Sylvie LAFRENIERE, Reza CHAHARMIR, Jonathan ETHIER, Khelifa HETTAK, Jafar SHAKER, Adrian MOMCIU
  • Publication number: 20170130084
    Abstract: A flake-less molecular ink suitable for printing (e.g. screen printing) conductive traces on a substrate has 30-60 wt % of a C8-C12 silver carboxylate or 5-75 wt % of bis(2-ethyl-1-hexylamine) copper (II) formate, bis(octylamine) copper (II) formate or tris(octylamine) copper (II) formate, 0.1-10 wt % of a polymeric binder (e.g. ethyl cellulose) and balance of at least one organic solvent. Conductive traces formed with the molecular ink are thinner, have lower resistivity, have greater adhesion to a substrate than metal flake inks, have better print resolution and are up to 8 times less rough than metal flake inks. In addition, the shear force required to remove light emitting diodes bonded to the traces using Loctite 3880 is at least 1.3 times stronger than for commercially available flake-based inks.
    Type: Application
    Filed: June 19, 2015
    Publication date: May 11, 2017
    Inventors: Arnold Kell, Sylvie Lafreniere, Chantal Paquet, Patrick Malenfant, Olga Mozenson