Patents by Inventor Sylvie Lombardi

Sylvie Lombardi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120041542
    Abstract: A tubular implant having an axial end to which is attached a ring of spoons of a material different from that of the implant. In another aspect, the invention provides a method of attaching elements to an axial end of a tubular implant comprising the steps of providing said elements on one end of a support tube having a radius substantially that of the implant in its unexpanded configuration, abutting the implant and elements end-to-end, fixing the elements to the implant, and parting the elements from the support tube. In a third aspect, the invention provides an implant carrying an element of another material, the element and implant having complementary tapered mating surfaces for achieving a taper form-fit of the element onto the implant.
    Type: Application
    Filed: October 21, 2011
    Publication date: February 16, 2012
    Applicant: ANGIOMED GMBH & CO. MEDIZINTECHNIK KG
    Inventors: Sylvie Lombardi, Wolfgang Supper, Arne Briest, Walter Gamer
  • Patent number: 8043364
    Abstract: A tubular implant having an axial end to which is attached a ring of spoons of a material different from that of the implant. In another aspect, the invention provides a method of attaching elements to an axial end of a tubular implant comprising the steps of providing said elements on one end of a support tube having a radius substantially that of the implant in its unexpanded configuration, abutting the implant and elements end-to-end, fixing the elements to the implant; and parting the elements from the support tube. In a third aspect, the invention provides an implant carrying an element of another material, the element and implant having complementary tapered mating surfaces for achieving a taper form fit of the element onto the implant.
    Type: Grant
    Filed: August 16, 2001
    Date of Patent: October 25, 2011
    Assignee: Angiomed GmbH & Co. Medizintechnik KG
    Inventors: Sylvie Lombardi, Wolfgang Supper, Arne Briest, Walter Garner
  • Patent number: 7462190
    Abstract: To improve radiopacity in a stent, and to reduce trauma while improving stent anchoring, imported beads are mounted To stent precursor matrices. Specially attractive is to provide a ring of such beads on the end rings of stent structures featuring a cylindrical mid length section flanked by outwardly flared ends. The beads can be of the same or different material from that of the stent matrix. The beads can assist in drawing the stent into a sleeve of a delivery system. Beads can be used to reveal features of the stent away from an end ring, such as a fenestration in the cylinder. Beads can be fixed in a position mechanically or by welding.
    Type: Grant
    Filed: February 13, 2001
    Date of Patent: December 9, 2008
    Assignee: ANGIOMED GmbH & Co. Medizintechnik KG
    Inventor: Sylvie Lombardi
  • Publication number: 20060229714
    Abstract: A covered stent including a stent covered on a first surface by a continuous covering and on a second surface by a discontinuous covering, the discontinuous covering bonded to the continuous covering, the discontinuous covering including first and second rings of material spaced apart such that a region of the second surface is uncovered.
    Type: Application
    Filed: June 6, 2006
    Publication date: October 12, 2006
    Inventors: Sylvie Lombardi, Guido Koch, Richard Layne, Tarun Edwin, Wolfgang Supper, Walter Gamer, Thomas Kirchhoff
  • Patent number: 7083640
    Abstract: A flexible covered stent having a stent covered on a first surface by a first layer of biocompatible material and on a second surface by both a second and third layer of biocompatible material, the first and second layers and the first and third layers of biocompatible material being bonded to one another through openings in a wall in the stent. The first layer of biocompatible material is longer than both the second and third layers of biocompatible material such that at least a portion of the second surface of the stent is not covered by either second or third layer, imparting flexibility to the stent.
    Type: Grant
    Filed: April 30, 2004
    Date of Patent: August 1, 2006
    Assignee: C. R. Bard, Inc.
    Inventors: Sylvie Lombardi, Guido Koch, Richard Layne, Tarun J. Edwin, Wolfgang Supper, Walter Gamer, Thomas Kirchhoff
  • Publication number: 20040204757
    Abstract: A flexible covered stent having a stent covered on a first surface by a first layer of biocompatible material and on a second surface by both a second and third layer of biocompatible material, the first and second layers and the first and third layers of biocompatible material being bonded to one another through openings in a wall in the stent. The first layer of biocompatible material is longer than both the second and third layers of biocompatible material such that at least a portion of the second surface of the stent is not covered by either second or third layer, imparting flexibility to the stent.
    Type: Application
    Filed: April 30, 2004
    Publication date: October 14, 2004
    Inventors: Sylvie Lombardi, Guido Koch, Richard Layne, Tarun J. Edwin, Wolfgang Supper, Walter Gamer, Thomas Kirchhoff
  • Patent number: 6740115
    Abstract: A flexible covered stent includes a stent covered on a first surface by a first layer of biocompatible material and on a second surface by a second layer of biocompatible material, the first and second layers of biocompatible material being bonded to one another through a wall in the stent. The first layer of biocompatible material is longer than the second layer of biocompatible material such that at least a portion of the second surface of the stent is left uncovered, imparting flexibility to the stent. A mid portion of the second surface of the stent can be left uncovered to impart flexibility to the stent similar to that enjoyed by a bare stent.
    Type: Grant
    Filed: April 11, 2003
    Date of Patent: May 25, 2004
    Assignee: C. R. Bard, Inc.
    Inventors: Sylvie Lombardi, Guido Koch, Richard Layne, Tarun Edwin, Wolfgang Supper, Walter Gamer, Thomas Kirchhoff
  • Publication number: 20040015228
    Abstract: A tubular implant having an axial end to which is attached a ring of spoons of a material different from that of the implant. In another aspect, the invention provides a method of attaching elements to an axial end of a tubular implant comprising the steps of providing said elements on one end of a support tube having a radius substantially that of the implant in its unexpanded configuration, abutting the implant and elements end-to-end, fixing the elements to the implant; and parting the elements from the support tube. In a third aspect, the invention provides an implant carrying an element of another material, the element and implant having complementary tapered mating surfaces for achieving a taper form fit of the element onto the implant.
    Type: Application
    Filed: June 27, 2003
    Publication date: January 22, 2004
    Inventors: Sylvie Lombardi, Wolfgang Supper, Arne Briest, Walter Gamer
  • Publication number: 20030191519
    Abstract: A flexible covered stent includes a stent covered on a first surface by a first layer of biocompatible material and on a second surface by a second layer of biocompatible material, the first and second layers of biocompatible material being bonded to one another through a wall in the stent. The first layer of biocompatible material is longer than the second layer of biocompatible material such that at least a portion of the second surface of the stent is left uncovered, imparting flexibility to the stent. A mid portion of the second surface of the stent can be left uncovered to impart flexibility to the stent similar to that enjoyed by a bare stent.
    Type: Application
    Filed: April 11, 2003
    Publication date: October 9, 2003
    Inventors: Sylvie Lombardi, Guido Koch, Richard Layne, Tarun Edwin, Wolfgang Supper, Walter Gamer, Thomas Kirchhoff
  • Publication number: 20030144725
    Abstract: An object of this invention is to provide a radially expandable stent (1) that holds a passageway enlarged by placing the stent (1) into a lumen. The stent (1) comprises a cylindrical frame formed by a plurality of unit structures (11, 12, . . . 16, . . . ); said unit structures (11, 12, . . . 16, . . . ) formed into a closed zig-zag configuration including an endless series of straight sections (111) and joined by bends (112), and arranged face to face into a shape of multistage; connecting members (31, 33, 35, 37 . . . ), which connect said unit structures (11, 12, . . . 16, . . . ); and a mesh (91), which is wrapped around an outside of said frame.
    Type: Application
    Filed: November 15, 2002
    Publication date: July 31, 2003
    Inventor: Sylvie Lombardi
  • Patent number: 6579314
    Abstract: A portion of a covered stent is encapsulated with ePTFE, so that the unencapsulated portion, which is covered by a single ePTFE covering, imparts an unimpaired flexibility to the stent. One surface of the stent, either the luminal or abluminal surface, is covered by a single continuous layer of ePTFE, while limited regions, preferably near the ends of the stent, of the other surface are also covered by ePTFE. The regions covered by ePTFE on both surfaces become encapsulated when the ePTFE of one layer becomes bonded to second layer. By leaving a middle region of the stent unencapsulated, the stent retains flexibility similar to a bare stent, thereby reducing the loading and deployment forces.
    Type: Grant
    Filed: October 29, 1999
    Date of Patent: June 17, 2003
    Assignee: C.R. Bard, Inc.
    Inventors: Sylvie Lombardi, Guido Koch, Richard Layne, Tarun Edwin, Wolfgang Supper, Walter Gamer, Thomas Kirchhoff
  • Patent number: 6203568
    Abstract: The present invention provides an endoluminal prosthesis for deployment in a body lumen of a patient body, the prosthesis comprising a tubular fabric liner and a radially expandable frame supporting the liner. A plurality of imagable bodies are attached to the liner, the imagable bodies providing a sharp contrast so as to define a pattern which indicates the prosthesis position when the prosthesis is imaged within the patient body. Preferably, each imagable body comprises a plate having first and second opposed major surfaces and a passage therebetween to facilitate stitching the imagable body to the liner. Advantageously, the imagable bodies can be aligned with the openings of a perforate frame structure so that at least some of the imagable bodies are visible through associated openings, but need not actually be attached to the frame directly.
    Type: Grant
    Filed: July 24, 1998
    Date of Patent: March 20, 2001
    Assignee: Medtronic, Inc.
    Inventors: Sylvie Lombardi, Steven W. Kim, Darin C. Gittings, Michael A. Evans, Jay A. Lenker, Allan R. Will
  • Patent number: 5824042
    Abstract: The present invention provides an endoluminal prosthesis for deployment in a body lumen of a patient body, the prosthesis comprising a tubular fabric liner and a radially expandable frame supporting the liner. A plurality of imagable bodies are attached to the liner, the imagable bodies providing a sharp contrast so as to define a pattern which indicates the prosthesis position when the prosthesis is imaged within the patient body. Preferably, each imagable body comprises a plate having first and second opposed major surfaces and a passage therebetween to facilitate stitching the imagable body to the liner. Advantageously, the imagable bodies can be aligned with the openings of a perforate frame structure so that at least some of the imagable bodies are visible through associated openings, but need not actually be attached to the frame directly.
    Type: Grant
    Filed: April 5, 1996
    Date of Patent: October 20, 1998
    Assignee: Medtronic, Inc.
    Inventors: Sylvie Lombardi, Steven W. Kim, Darin C. Gittings, Michael A. Evans, Jay A. Lenker, Allan R. Will