Patents by Inventor Syuichi Oguro

Syuichi Oguro has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11806660
    Abstract: Carbon dioxide gas in a high-pressure gas to be treated is stably separated using a separation membrane. Upon separating carbon dioxide gas in a high-pressure gas to be treated using a separation membrane module including a separation membrane, a preliminary boosted gas is supplied to the separation membrane module before the supply of natural gas is started to boost a pressure on a primary side of the separation membrane to a preliminary pressure between a stand-by pressure and an operating pressure. Thus, when the supply of a high-pressure gas to be treated is started to increase the pressure of the separation membrane module to an operating pressure, an abrupt decrease in temperature of the gas to be treated can be suppressed.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: November 7, 2023
    Assignee: JGC Corporation
    Inventors: Shogo Teratani, Syuichi Oguro, Hiroaki Hasegawa, Junya Okazaki
  • Patent number: 11801478
    Abstract: To regenerate, by a simple method, an inorganic separation membrane separating non-hydrocarbon gas contained in treatment target gas. Provided in separating the non-hydrocarbon gas contained in the treatment target gas is a regeneration gas supply path supplying moisture-containing regeneration gas to a primary side of the inorganic separation membrane in a separation membrane module. As a result, it is possible to regenerate the inorganic separation membrane by supplying moisture-containing CO2 gas to the inorganic separation membrane and then supplying dry natural gas. Accordingly, there is no need to use dry regeneration gas and the CO2 gas supplied via, for example, a pipeline can be used as it is.
    Type: Grant
    Filed: December 25, 2018
    Date of Patent: October 31, 2023
    Assignee: JGC Corporation
    Inventors: Hiroaki Hasegawa, Syuichi Oguro, Shogo Teratani, Junya Okazaki, Mizuki Takeuchi
  • Publication number: 20220054973
    Abstract: Carbon dioxide gas in a high-pressure gas to be treated is stably separated using a separation membrane. Upon separating carbon dioxide gas in a high-pressure gas to be treated using a separation membrane module including a separation membrane, a preliminary boosted gas is supplied to the separation membrane module before the supply of natural gas is started to boost a pressure on a primary side of the separation membrane to a preliminary pressure between a stand-by pressure and an operating pressure. Thus, when the supply of a high-pressure gas to be treated is started to increase the pressure of the separation membrane module to an operating pressure, an abrupt decrease in temperature of the gas to be treated can be suppressed.
    Type: Application
    Filed: January 29, 2019
    Publication date: February 24, 2022
    Inventors: Shogo TERATANI, Syuichi OGURO, Hiroaki HASEGAWA, Junya OKAZAKI
  • Publication number: 20210316254
    Abstract: To regenerate, by a simple method, an inorganic separation membrane separating non-hydrocarbon gas contained in treatment target gas. Provided in separating the non-hydrocarbon gas contained in the treatment target gas is a regeneration gas supply path supplying moisture-containing regeneration gas to a primary side of the inorganic separation membrane in a separation membrane module. As a result, it is possible to regenerate the inorganic separation membrane by supplying moisture-containing CO2 gas to the inorganic separation membrane and then supplying dry natural gas. Accordingly, there is no need to use dry regeneration gas and the CO2 gas supplied via, for example, a pipeline can be used as it is.
    Type: Application
    Filed: December 25, 2018
    Publication date: October 14, 2021
    Inventors: Hiroaki HASEGAWA, Syuichi OGURO, Shogo TERATANI, Junya OKAZAKI, Mizuki TAKEUCHI
  • Patent number: 10744455
    Abstract: Provided are a non-hydrocarbon gas separation device and the like capable of increasing a discharge pressure of a non-hydrocarbon gas to a downstream side while preventing an increase in size of equipment. In the non-hydrocarbon gas separation device, a first separation module (2a) and a second separation module (2b) connected to each other in series are each configured to separate a non-hydrocarbon from a natural gas through use of a separation membrane (20). The non-hydrocarbon gas having been separated from the natural gas is discharged to each of discharge lines (202) and (204). At this time, a pressure of the first separation module (2a) on a discharge line (202) side is higher than a pressure of the second separation module (2b) on a discharge line (204) or (202) side.
    Type: Grant
    Filed: October 1, 2015
    Date of Patent: August 18, 2020
    Assignee: JGC Corporation
    Inventors: Hiroaki Hasegawa, Hiroshi Umino, Yasushi Fujimura, Aiko Matsuyama, Syuichi Oguro, Keiichi Nishida, Shinji Takahashi
  • Patent number: 10737214
    Abstract: Provided is a non-hydrocarbon gas separation device or the like capable of separating a non-hydrocarbon gas from a natural gas containing a heavy hydrocarbon. The non-hydrocarbon gas separation device is configured to separate a non-hydrocarbon gas from a natural gas. The natural gas containing a heavy hydrocarbon, the heavy hydrocarbon having 5 or more carbon atoms, is supplied to a separation module (2). The natural gas having been separated from the non-hydrocarbon gas is allowed to outflow from the separation module (2), and the non-hydrocarbon gas having been separated from the natural gas is discharged from the separation module (2). An inorganic membrane (20), which is housed in the separation module (2), and is made of an inorganic material is configured to allow the non-hydrocarbon gas contained in the natural gas to permeate therethrough to a discharge side, and to allow the natural gas having been separated from the non-hydrocarbon gas to flow to an outflow side.
    Type: Grant
    Filed: October 1, 2015
    Date of Patent: August 11, 2020
    Assignee: JGC Corporation
    Inventors: Hiroaki Hasegawa, Hiroshi Umino, Yasushi Fujimura, Aiko Matsuyama, Syuichi Oguro, Keiichi Nishida, Shinji Takahashi
  • Publication number: 20180280866
    Abstract: Provided is a non-hydrocarbon gas separation device or the like capable of separating a non-hydrocarbon gas from a natural gas containing a heavy hydrocarbon. The non-hydrocarbon gas separation device is configured to separate a non-hydrocarbon gas from a natural gas. The natural gas containing a heavy hydrocarbon, the heavy hydrocarbon having 5 or more carbon atoms, is supplied to a separation module (2). The natural gas having been separated from the non-hydrocarbon gas is allowed to outflow from the separation module (2), and the non-hydrocarbon gas having been separated from the natural gas is discharged from the separation module (2). An inorganic membrane (20), which is housed in the separation module (2), and is made of an inorganic material is configured to allow the non-hydrocarbon gas contained in the natural gas to permeate therethrough to a discharge side, and to allow the natural gas having been separated from the non-hydrocarbon gas to flow to an outflow side.
    Type: Application
    Filed: October 1, 2015
    Publication date: October 4, 2018
    Inventors: Hiroaki HASEGAWA, Hiroshi UMINO, Yasushi FUJIMURA, Aiko MATSUYAMA, Syuichi OGURO, Keiichi NISHIDA, Shinji TAKAHASHI
  • Publication number: 20180272272
    Abstract: Provided are a non-hydrocarbon gas separation device and the like capable of increasing a discharge pressure of a non-hydrocarbon gas to a downstream side while preventing an increase in size of equipment. In the non-hydrocarbon gas separation device, a first separation module (2a) and a second separation module (2b) connected to each other in series are each configured to separate a non-hydrocarbon from a natural gas through use of a separation membrane (20). The non-hydrocarbon gas having been separated from the natural gas is discharged to each of discharge lines (202) and (204). At this time, a pressure of the first separation module (2a) on a discharge line (202) side is higher than a pressure of the second separation module (2b) on a discharge line (204) or (202) side.
    Type: Application
    Filed: October 1, 2015
    Publication date: September 27, 2018
    Inventors: Hiroaki HASEGAWA, Hiroshi UMINO, Yasushi FUJIMURA, Aiko MATSUYAMA, Syuichi OGURO, Keiichi NISHIDA, Shinji TAKAHASHI
  • Patent number: 9457314
    Abstract: A fluid separation apparatus is described, including a casing and a separation module. The casing includes a mixed fluid inlet, a separated fluid outlet through which a selectively separated fluid is discharged, and a residual fluid outlet. The separation module has a set of serially arranged separation elements disposed therein and is insertable into the casing from an end of the casing. The separation module includes a first connection jig disposed between adjacent separation elements, second connection jigs disposed at two ends of the set of serially arranged separation elements, and a coupling jig coupling the first and the second connection jigs to each other.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: October 4, 2016
    Assignee: JGC CORPORATION
    Inventors: Syuichi Oguro, Nobuhiro Yamada, Yasushi Fujimura
  • Publication number: 20140283683
    Abstract: A fluid separation apparatus is described, including a casing and a separation module. The casing includes a mixed fluid inlet, a separated fluid outlet through which a selectively separated fluid is discharged, and a residual fluid outlet. The separation module has a set of serially arranged separation elements disposed therein and is insertable into the casing from an end of the casing. The separation module includes a first connection jig disposed between adjacent separation elements second connection jigs disposed at two ends of the set of serially arranged separation elements, and a coupling jig coupling the first and the second connection jigs to each other.
    Type: Application
    Filed: October 28, 2011
    Publication date: September 25, 2014
    Applicant: JGC CORPORATION
    Inventors: Syuichi Oguro, Nobuhiro Yamada, Yasushi Fujimura