Patents by Inventor Szymon Klossowski

Szymon Klossowski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11883381
    Abstract: Provided herein are small molecule inhibitors of ASH1L activity and small molecules that facilitate ASH1L degradation and methods of use thereof for the treatment of disease, including acute leukemia, solid cancers and other diseases dependent on activity of ASH1L.
    Type: Grant
    Filed: May 12, 2017
    Date of Patent: January 30, 2024
    Assignee: The Regents of the University of Michigan
    Inventors: Jolanta Grembecka, Tomasz Cierpicki, David Rogawski, Dmitry Borkin, Szymon Klossowski, Zhuang Jin, Deanna Montgomery, Jing Deng, Marta Krotoska, Hao Li
  • Patent number: 11833210
    Abstract: Provided herein are small molecules that bind to ASH1L and inhibit ASH1L activity, and methods of use thereof for the treatment of disease, including acute leukemia, solid cancers and other diseases dependent on activity of ASH1L.
    Type: Grant
    Filed: October 18, 2021
    Date of Patent: December 5, 2023
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Jolanta Grembecka, Szymon Klossowski, Jing Deng, Tomasz Cierpicki, Hao Li, Hongzhi Miao, Trupta Purohit, EunGi Kim
  • Patent number: 11786602
    Abstract: Provided herein are small molecules comprising a first domain that binds to ASH1L and a second domain that facilitates ASH1L degradation. In particular, ASH1L-targeting proteolysis targeting chimeras (PROTACs) and methods of use thereof for the treatment of disease (e.g., acute leukemia, solid cancers and other diseases dependent on activity of ASH1L) are provided.
    Type: Grant
    Filed: September 7, 2021
    Date of Patent: October 17, 2023
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Jolanta Grembecka, Szymon Klossowski, Jing Deng, Tomasz Cierpicki, Hao Li, Hongzhi Miao, Trupta Purohit, EunGi Kim, Dong Chen
  • Patent number: 11673898
    Abstract: The present disclosure provides methods of inhibiting the interaction of menin with MLL1, MLL2 and MLL-fusion oncoproteins with compositions of Formula (II-A). The methods are useful for the treatment of leukemia, solid cancers, diabetes and other diseases dependent on activity of MLL1, MLL2, MLL fusion proteins, and/or menin. Compositions of Formula (II-A) for use in these methods are also provided.
    Type: Grant
    Filed: July 30, 2020
    Date of Patent: June 13, 2023
    Assignees: KURA ONCOLOGY, INC., THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Tao Wu, Liansheng Li, Yi Wang, Pingda Ren, Jolanta Grembecka, Tomasz Cierpicki, Szymon Klossowski, Jonathan Pollock, Dmitry Borkin
  • Patent number: 11633490
    Abstract: Provided herein are small molecules comprising a first domain that binds to ASH1L and a second domain that facilitates ASH1L degradation. In particular, ASH1L-targeting proteolysis targeting chimeras (PROTACs) and methods of use thereof for the treatment of disease (e.g., acute leukemia, solid cancers and other diseases dependent on activity of ASH1L) are provided.
    Type: Grant
    Filed: September 7, 2021
    Date of Patent: April 25, 2023
    Assignee: The Regents of the University of Michigan
    Inventors: Jolanta Grembecka, Szymon Klossowski, Jing Deng, Tomasz Cierpicki, Hao Li, Hongzhi Miao, Trupta Purohit, EunGi Kim, Dong Chen
  • Patent number: 11555041
    Abstract: The present disclosure provides compounds of Formula (I-A) for inhibiting the interaction of menin with MLL1, MLL2 and MLL-fusion oncoproteins. The compounds are useful for the treatment of leukemia, solid cancers, diabetes and other diseases dependent on activity of MLL1, MLL2, MLL fusion proteins, and/or menin.
    Type: Grant
    Filed: July 13, 2020
    Date of Patent: January 17, 2023
    Assignees: KURA ONCOLOGY, INC., THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Tao Wu, Liansheng Li, Yi Wang, Pingda Ren, Jolanta Grembecka, Tomasz Cierpicki, Szymon Klossowski, Jonathan Pollock, Dmitry Borkin
  • Publication number: 20220288217
    Abstract: Provided herein are small molecules that bind to ASH1L and inhibit ASH1L activity, and methods of use thereof for the treatment of disease, including acute leukemia, solid cancers and other diseases dependent on activity of ASH1L.
    Type: Application
    Filed: October 18, 2021
    Publication date: September 15, 2022
    Inventors: Jolanta Grembecka, Szymon Klossowski, Jing Deng, Tomasz Cierpicki, Hao Li, Hongzhi Miao, Trupta Purohit, EunGi Kim
  • Publication number: 20220072142
    Abstract: Provided herein are small molecules comprising a first domain that binds to ASH1L and a second domain that facilitates ASH1L degradation. In particular, ASH1L-targeting proteolysis targeting chimeras (PROTACs) and methods of use thereof for the treatment of disease (e.g., acute leukemia, solid cancers and other diseases dependent on activity of ASH1L) are provided.
    Type: Application
    Filed: September 7, 2021
    Publication date: March 10, 2022
    Inventors: Jolanta Grembecka, Szymon Klossowski, Jing Deng, Tomasz Cierpicki, Hao Li, Hongzhi Miao, Trupta Purohit, EunGi Kim, Dong Chen
  • Patent number: 11147885
    Abstract: Provided herein are small molecules that bind to ASH1L and inhibit ASH1L activity, and methods of use thereof for the treatment of disease, including acute leukemia, solid cancers and other diseases dependent on activity of ASH1L.
    Type: Grant
    Filed: April 21, 2020
    Date of Patent: October 19, 2021
    Assignee: The Regents of the University of Michigan
    Inventors: Jolanta Grembecka, Szymon Klossowski, Jing Deng, Tomasz Cierpicki, Hao Li, Hongzhi Miao, Trupta Purohit, EunGi Kim
  • Patent number: 11110177
    Abstract: Provided herein are small molecules comprising a first domain that binds to ASH1L and a second domain that facilitates ASH1L degradation. In particular, ASH1L-targeting proteolysis targeting chimeras (PROTACs) and methods of use thereof for the treatment of disease (e.g., acute leukemia, solid cancers and other diseases dependent on activity of ASH1L) are provided.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: September 7, 2021
    Assignee: The Regents of the University of Michigan
    Inventors: Jolanta Grembecka, Szymon Klossowski, Jing Deng, Tomasz Cierpicki, Hao Li, Hongzhi Miao, Trupta Purohit, EunGi Kim, Dong Chen
  • Publication number: 20210107917
    Abstract: The present disclosure provides methods of inhibiting the interaction of menin with MLL1, MLL2 and MLL-fusion oncoproteins. The methods are useful for the treatment of leukemia, solid cancers, diabetes and other diseases dependent on activity of MLL1, MLL2, MLL fusion proteins, and/or menin. Compositions for use in these methods are also provided.
    Type: Application
    Filed: July 13, 2020
    Publication date: April 15, 2021
    Inventors: Tao WU, Liansheng LI, Yi WANG, Pingda REN, Jolanta GREMBECKA, Tomasz CIERPICKI, Szymon KLOSSOWSKI, Jonathan POLLOCK, Dmitry BORKIN
  • Publication number: 20210101908
    Abstract: The present disclosure provides methods of inhibiting the interaction of menin with MLL1, MLL2 and MLL-fusion oncoproteins. The methods are useful for the treatment of leukemia, solid cancers, diabetes and other diseases dependent on activity of MLL1, MLL2, MLL fusion proteins, and/or menin. Compositions for use in these methods are also provided.
    Type: Application
    Filed: July 30, 2020
    Publication date: April 8, 2021
    Inventors: Tao WU, Liansheng LI, Yi WANG, Pingda REN, Jolanta GREMBECKA, Tomasz CIERPICKI, Szymon KLOSSOWSKI, Jonathan POLLOCK, Dmitry BORKIN
  • Patent number: 10781218
    Abstract: The present disclosure provides compounds of Formula (II-A), which inhibit the interaction of menin with one or more of MLL1, MLL2 and MLL-fusion oncoproteins. Also disclosed are methods for the treatment of leukemia, solid cancers, diabetes and other diseases dependent on activity of MLL1, MLL2, MLL fusion proteins, and/or menin.
    Type: Grant
    Filed: March 15, 2017
    Date of Patent: September 22, 2020
    Assignees: KURA ONCOLOGY, INC., THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Tao Wu, Liansheng Li, Yi Wang, Pingda Ren, Jolanta Grembecka, Tomasz Cierpicki, Szymon Klossowski, Jonathan Pollock, Dmitry Borkin
  • Patent number: 10752639
    Abstract: The present disclosure provides compounds of Formula (I-E) for inhibiting the interaction of menin with MLL1, MLL2 and MLL-fusion oncoproteins. The compounds are useful for the treatment of leukemia, solid cancers, diabetes and other diseases dependent on activity of MLL1, MLL2, MLL fusion proteins, and/or menin.
    Type: Grant
    Filed: March 15, 2017
    Date of Patent: August 25, 2020
    Assignees: KURA ONCOLOGY, INC., THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Tao Wu, Liansheng Li, Yi Wang, Pingda Ren, Jolanta Grembecka, Tomasz Cierpicki, Szymon Klossowski, Jonathan Pollock, Dmitry Borkin
  • Publication number: 20200246474
    Abstract: Provided herein are small molecules that bind to ASH1L and inhibit ASH1L activity, and methods of use thereof for the treatment of disease, including acute leukemia, solid cancers and other diseases dependent on activity of ASH1L.
    Type: Application
    Filed: April 21, 2020
    Publication date: August 6, 2020
    Inventors: Jolanta Grembecka, Szymon Klossowski, Jing Deng, Tomasz Cierpicki, Hao Li, Hongzhi Miao, Trupta Purohit, EunGi Kim
  • Patent number: 10632209
    Abstract: Provided herein are small molecules that bind to ASH1L and inhibit ASH1L activity, and methods of use thereof for the treatment of disease, including acute leukemia, solid cancers and other diseases dependent on activity of ASH1L.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: April 28, 2020
    Assignee: The Regents of the University of Michigan
    Inventors: Jolanta Grembecka, Szymon Klossowski, Jing Deng, Tomasz Cierpicki, Hao Li, Hongzhi Miao, Trupta Purohit, EunGi Kim
  • Publication number: 20190144442
    Abstract: Provided herein are small molecules that bind to ASH1L and inhibit ASH1L activity, and methods of use thereof for the treatment of disease, including acute leukemia, solid cancers and other diseases dependent on activity of ASH1L.
    Type: Application
    Filed: November 9, 2018
    Publication date: May 16, 2019
    Inventors: Jolanta Grembecka, Szymon Klossowski, Jing Deng, Tomasz Cierpicki, Hao Li, Hongzhi Miao, Trupta Purohit, EunGi Kim
  • Publication number: 20190142961
    Abstract: Provided herein are small molecules comprising a first domain that binds to ASH1L and a second domain that facilitates ASH1L degradation. In particular, ASH1L-targeting proteolysis targeting chimeras (PROTACs) and methods of use thereof for the treatment of disease (e.g., acute leukemia, solid cancers and other diseases dependent on activity of ASH1L) are provided.
    Type: Application
    Filed: November 9, 2018
    Publication date: May 16, 2019
    Inventors: Jolanta Grembecka, Szymon Klossowski, Jing Deng, Tomasz Cierpicki, Hao Li, Hongzhi Miao, Trupta Purohit, EunGi Kim, Dong Chen
  • Publication number: 20190142799
    Abstract: Provided herein are small molecule inhibitors of ASH1L activity and small molecules that facilitate ASH1L degradation and methods of use thereof for the treatment of disease, including acute leukemia, solid cancers and other diseases dependent on activity of ASH1L.
    Type: Application
    Filed: May 12, 2017
    Publication date: May 16, 2019
    Inventors: Jolanta Grembecka, Tomasz Cierpicki, David Rogawski, Dmitry Borkin, Szymon Klossowski, Jin Zhuang, Deanna Montgomery
  • Publication number: 20190092784
    Abstract: The present disclosure provides methods of inhibiting the interaction of menin with MLL1, MLL2 and MLL-fusion oncoproteins. The methods are useful for the treatment of leukemia, solid cancers, diabetes and other diseases dependent on activity of MLL1, MLL2, MLL fusion proteins, and/or menin. Compositions for use in these methods are also provided.
    Type: Application
    Filed: March 15, 2017
    Publication date: March 28, 2019
    Inventors: Tao Wu, Liansheng Li, Yi Wang, Pingda Ren, Jolanta Grembecka, Tomasz Cierpicki, Szymon Klossowski, Jonathan Pollock, Dmitry Borkin