Patents by Inventor T. Freeman
T. Freeman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20180371892Abstract: A system configured to provide thermal regulation and vibration isolation to one or more electronic components. The system includes a sensor chassis defining an interior chamber, an electronics housing in the interior chamber of the sensor chassis, a thermoelectric cooler coupled between the sensor chassis and the electronics housing, a thermal strap coupled to the sensor chassis, and at least one isolator coupled to the sensor chassis. The system may also include an insulating material, such as Aerogel, in the interior chamber of the sensor chassis and extending around the electronics housing.Type: ApplicationFiled: June 25, 2018Publication date: December 27, 2018Inventors: David W. Shahan, Ryan T. Freeman, Deborah J. Kirby, Ryan G. Quarfoth, Geoffrey P. McKnight
-
Patent number: 10153102Abstract: A lockout, tagout (LOTO) device and associated implementation method for a switchable energy isolation device are provided. The isolation device includes first and second electrical terminal members and a slideable linkage disposed and in electrical communication therebetween for switching the electrical terminal members between isolated and non-isolated states. The LOTO device includes a cover member configured to extend over the terminal members and the linkage, and a fastener member coupled to the cover member. The fastener member is configured to engage the first or second electrical terminal member to secure the cover member to the isolation device. A tagging member is configured to engage the fastener member and a securing member engaged with the cover member, upon the cover member being secured to the isolation device, to prevent the fastener member from disengaging the first or second electrical terminal member without the tagging member disengaging the fastener member.Type: GrantFiled: August 3, 2016Date of Patent: December 11, 2018Assignee: Duke Energy CorporationInventor: Richard T. Freeman
-
Publication number: 20180352208Abstract: A method and system of converting stereo video content to multi-view video content combines an Eulerian approach with a Lagrangian approach. The method comprises generating a disparity map for each of the left and right views of a received stereoscopic frame. For each corresponding pair of left and right scanlines of the received stereoscopic frame, the method further comprises decomposing the left and right scanlines into a left sum of wavelets or other basis functions, and a right sum wavelets or other basis functions. The method further comprises establishing an initial disparity correspondence between left wavelets and right wavelets based on the generated disparity maps, and refining the initial disparity between the left wavelet and the right wavelet using a phase difference between the corresponding wavelets. The method further comprises reconstructing at least one novel view based on the left and right wavelets.Type: ApplicationFiled: June 5, 2018Publication date: December 6, 2018Inventors: Wojciech Matusik, Piotr K. Didyk, Ph.D., William T. Freeman, Petr Kellnhofer, Pitchaya Sitthi-Amorn, Frederic Durand, Szu-Po Wang
-
Patent number: 10129658Abstract: A method of recovering audio signals and corresponding apparatus according to an embodiment of the present invention using video or other sequence of images enables recovery of sound that causes vibrations of a surface. An embodiment method includes combining representations of local motions of a surface to produce a global motion signal of the surface. The local motions are captured in a series of images of features of the surface, and the global motion signal represents a sound within an environment in which the surface is located. Some embodiments compare representations of local motions of a surface to determine which motions are in-phase or out-of-phase with each other, enabling visualization of surface vibrational modes. Embodiments are passive, as compared to other forms of remote audio recovery that employ active sensing, such as laser microphone systems. Example applications for the embodiments include espionage and surveillance.Type: GrantFiled: July 21, 2014Date of Patent: November 13, 2018Assignee: Massachusetts Institute of TechnologyInventors: Michael Rubinstein, Myers Abraham Davis, Frederic Durand, William T. Freeman, Neal Wadhwa
-
Publication number: 20180268543Abstract: In an embodiment, a method converts two images to a transform representation in a transform domain. For each spatial position, the method examines coefficients representing a neighborhood of the spatial position that is spatially the same across each of the two images. The method calculates a first vector in the transform domain based on first coefficients representing the spatial position, the first vector representing change from a first to second image of the two images describing deformation. The method modifies the first vector to create a second vector in the transform domain representing amplified movement at the spatial position between the first and second images. The method calculates second coefficients based on the second vector of the transform domain. From the second coefficients, the method generates an output image showing motion amplified according to the second vector for each spatial position between the first and second images.Type: ApplicationFiled: May 17, 2018Publication date: September 20, 2018Inventors: Hao-yu Wu, Michael Rubinstein, Eugene Inghaw Shih, John V. Guttag, Frederic Durand, William T. Freeman, Neal Wadhwa
-
Publication number: 20180225803Abstract: The method for dynamic video magnification magnifies small motions occurring simultaneously within large motions. The method involves selecting a region of interest from a video for magnification. The region of interest is warped to obtain a stabilized sequence of frames that discounts large motions. Each frame of the stabilized sequence is decomposed to a foreground layer, a background layer, and an alpha matte layer, and each of the foreground and alpha matte layers is magnified. Then a magnified sequence is generated from the magnified layers using matte inversion. Any image holes in the magnified sequence are filled in using texture synthesis. Finally, the magnified sequence is de-warped to the original space-time coordinates.Type: ApplicationFiled: June 3, 2016Publication date: August 9, 2018Applicants: QATAR FOUNDATION FOR EDUCATION, SCIENCE AND COMMUNITY DEVELOPMENT, MASSACHUSETTS INSTITUTE OF TECHNOLOGYInventors: MOHAMED ABDELAZIZ A. MOHAMED ELGHARIB, MOHAMED M. HEFEEDA, WILLIAM T. FREEMAN, FREDERIC DURAND
-
Patent number: 10037609Abstract: A method and corresponding device for identifying operational mode shapes of an object in a video stream includes extracting pixel-wise Eulerian motion signals of an object from an undercomplete representation of frames within a video stream. Pixel-wise Eulerian motion signals are downselected to produce a representative set of Eulerian motion signals of the object. Operational mode shapes of the object are identified based on the representative set. Resonant frequencies can also be identified. Embodiments enable vibrational characteristics of objects to be determined using video in near real time.Type: GrantFiled: February 1, 2016Date of Patent: July 31, 2018Assignee: Massachusetts Institute of TechnologyInventors: Justin Gejune Chen, Oral Buyukozturk, William T. Freeman, Frederic Pierre Durand, Myers Abraham Davis, Neal Wadhwa
-
Patent number: 10007986Abstract: In an embodiment, a method converts two images to a transform representation in a transform domain. For each spatial position, the method examines coefficients representing a neighborhood of the spatial position that is spatially the same across each of the two images. The method calculates a first vector in the transform domain based on first coefficients representing the spatial position, the first vector representing change from a first to second image of the two images describing deformation. The method modifies the first vector to create a second vector in the transform domain representing amplified movement at the spatial position between the first and second images. The method calculates second coefficients based on the second vector of the transform domain. From the second coefficients, the method generates an output image showing motion amplified according to the second vector for each spatial position between the first and second images.Type: GrantFiled: September 29, 2017Date of Patent: June 26, 2018Assignees: MASSACHUSETTS INSTITUTE OF TECHNOLOGY, QUANTA COMPUTER, INC.Inventors: Hao-yu Wu, Michael Rubinstein, Eugene Inghaw Shih, John V. Guttag, Frederic Durand, William T. Freeman, Neal Wadhwa
-
Publication number: 20180096482Abstract: An apparatus according to an embodiment of the present invention enables measurement and visualization of a refractive field such as a fluid. An embodiment device obtains video captured by a video camera with an imaging plane. Representations of apparent motions in the video are correlated to determine actual motions of the refractive field. A textured background of the scene can be modeled as stationary, with a refractive field translating between background and video camera. This approach offers multiple advantages over conventional fluid flow visualization, including an ability to use ordinary video equipment outside a laboratory without particle injection. Even natural backgrounds can be used, and fluid motion can be distinguished from refraction changes. Embodiments can render refractive flow visualizations for augmented reality, wearable devices, and video microscopes.Type: ApplicationFiled: November 21, 2017Publication date: April 5, 2018Inventors: William T. Freeman, Frederic Durand, Tianfan Xue, Michael Rubinstein, Neal Wadhwa
-
Publication number: 20180061063Abstract: A method and corresponding apparatus for measuring object motion using camera images may include measuring a global optical flow field of a scene. The scene may include target and reference objects captured in an image sequence. Motion of a camera used to capture the image sequence may be determined relative to the scene by measuring an apparent, sub-pixel motion of the reference object with respect to an imaging plane of the camera. Motion of the target object corrected for the camera motion may be calculated based on the optical flow field of the scene and on the apparent, sub-pixel motion of the reference object with respect to the imaging plane of the camera. Embodiments may enable measuring vibration of structures and objects from long distance in relatively uncontrolled settings, with or without accelerometers, with high signal-to-noise ratios.Type: ApplicationFiled: February 28, 2017Publication date: March 1, 2018Inventors: Oral Buyukozturk, William T. Freeman, Frederic Durand, Myers Abraham Davis, Neal Wadhwa, Justin G. Chen
-
Publication number: 20180047160Abstract: In an embodiment, a method converts two images to a transform representation in a transform domain. For each spatial position, the method examines coefficients representing a neighborhood of the spatial position that is spatially the same across each of the two images. The method calculates a first vector in the transform domain based on first coefficients representing the spatial position, the first vector representing change from a first to second image of the two images describing deformation. The method modifies the first vector to create a second vector in the transform domain representing amplified movement at the spatial position between the first and second images. The method calculates second coefficients based on the second vector of the transform domain. From the second coefficients, the method generates an output image showing motion amplified according to the second vector for each spatial position between the first and second images.Type: ApplicationFiled: September 29, 2017Publication date: February 15, 2018Applicant: Quanta Computer, Inc.Inventors: Hao-yu Wu, Michael Rubinstein, Eugene Inghaw Shih, John V. Guttag, Frederic Durand, William T. Freeman, Neal Wadhwa
-
Publication number: 20180040435Abstract: A lockout, tagout (LOTO) device and associated implementation method for a switchable energy isolation device are provided. The isolation device includes first and second electrical terminal members and a slideable linkage disposed and in electrical communication therebetween for switching the electrical terminal members between isolated and non-isolated states. The LOTO device includes a cover member configured to extend over the terminal members and the linkage, and a fastener member coupled to the cover member. The fastener member is configured to engage the first or second electrical terminal member to secure the cover member to the isolation device. A tagging member is configured to engage the fastener member and a securing member engaged with the cover member, upon the cover member being secured to the isolation device, to prevent the fastener member from disengaging the first or second electrical terminal member without the tagging member disengaging the fastener member.Type: ApplicationFiled: August 3, 2016Publication date: February 8, 2018Inventor: Richard T. Freeman
-
Publication number: 20180032838Abstract: Geometries of the structures and objects deviate from their idealized models, while not always visible to the naked eye. Embodiments of the present invention reveal and visualize such subtle geometric deviations, which can contain useful, surprising information. In an embodiment of the present invention, a method can include fitting a model of a geometry to an input image, matting a region of the input image according to the model based on a sampling function, generating a deviation function based on the matted region, extrapolating the deviation function to an image wide warping field, and generating an output image by warping the input image according to the warping. In an embodiment of the present invention, Deviation Magnification inputs takes a still image or frame, fits parametric models to objects of interest, and generates an output image exaggerating departures from ideal geometries.Type: ApplicationFiled: July 29, 2016Publication date: February 1, 2018Inventors: Neal Wadhwa, Tali Dekel, Donglai Wei, Frederic Durand, William T. Freeman
-
Patent number: 9842404Abstract: An imaging method and corresponding apparatus according to an embodiment of the present invention enables measurement and visualization of fluid flow. An embodiment method includes obtaining video captured by a video camera with an imaging plane. Representations of motions in the video are correlated. A textured background of the scene can be modeled as stationary, with a refractive field translating between background and video camera. This approach offers multiple advantages over conventional fluid flow visualization, including an ability to use ordinary video equipment outside a laboratory without particle injection. Even natural backgrounds can be used, and fluid motion can be distinguished from refraction changes. Depth and three-dimensional information can be recovered using stereo video, and uncertainty methods can enhance measurement robustness where backgrounds are less textured. Example applications can include avionics and hydrocarbon leak detection.Type: GrantFiled: May 15, 2014Date of Patent: December 12, 2017Assignee: Massachusetts Institite of TechnologyInventors: William T. Freeman, Frederic Durand, Tianfan Xue, Michael Rubinstein, Neal Wadhwa
-
Patent number: 9811901Abstract: In one embodiment, a method of amplifying temporal variation in at least two images comprises examining pixel values of the at least two images. The temporal variation of the pixel values between the at least two images can be below a particular threshold. The method can further include applying signal processing to the pixel values.Type: GrantFiled: March 26, 2013Date of Patent: November 7, 2017Assignees: Massachusetts Institute of Technology, Quanta Computer Inc.Inventors: Hao-yu Wu, Michael Rubinstein, Eugene Inghaw Shih, John V. Guttag, Frederic Durand, William T. Freeman
-
Patent number: 9805475Abstract: In one embodiment, a method of amplifying temporal variation in at least two images includes converting two or more images to a transform representation. The method further includes, for each spatial position within the two or more images, examining a plurality of coefficient values. The method additionally includes calculating a first vector based on the plurality of coefficient values. The first vector can represent change from a first image to a second image of the at least two images describing deformation. The method also includes modifying the first vector to create a second vector. The method further includes calculating a second plurality of coefficients based on the second vector.Type: GrantFiled: September 7, 2012Date of Patent: October 31, 2017Assignees: Massachusetts Institute of Technology, Quanta Computer Inc.Inventors: Michael Rubinstein, Neal Wadhwa, Frederic Durand, William T. Freeman, Hao-yu Wu, Eugene Inghaw Shih, John V. Guttag
-
Patent number: 9756316Abstract: Multi-view autostereoscopic displays provide an immersive, glasses-free 3D viewing experience, but they preferably use correctly filtered content from multiple viewpoints. The filtered content, however, may not be easily obtained with current stereoscopic production pipelines. The proposed method and system takes a stereoscopic video as an input and converts it to multi-view and filtered video streams that may be used to drive multi-view autostereoscopic displays. The method combines a phase-based video magnification and an interperspective antialiasing into a single filtering process. The whole algorithm is simple and may be efficiently implemented on current GPUs to yield real-time performance. Furthermore, the ability to retarget disparity is naturally supported. The method is robust and works transparent materials, and specularities. The method provides superior results when compared to the state-of-the-art depth-based rendering methods.Type: GrantFiled: November 3, 2014Date of Patent: September 5, 2017Assignee: Massachusetts Institute of TechnologyInventors: Piotr Krzysztof Didyk, Pitchaya Sitthi-Amorn, Wojciech Matusik, Frederic Durand, William T. Freeman
-
Publication number: 20170221216Abstract: A method and corresponding device for identifying operational mode shapes of an object in a video stream includes extracting pixel-wise Eulerian motion signals of an object from an undercomplete representation of frames within a video stream. Pixel-wise Eulerian motion signals are downselected to produce a representative set of Eulerian motion signals of the object. Operational mode shapes of the object are identified based on the representative set. Resonant frequencies can also be identified. Embodiments enable vibrational characteristics of objects to be determined using video in near real time.Type: ApplicationFiled: February 1, 2016Publication date: August 3, 2017Inventors: Justin Gejune Chen, Oral Buyukozturk, William T. Freeman, Frederic Pierre Durand, Myers Abraham Davis, Neal Wadhwa
-
Publication number: 20170220718Abstract: Structural health monitoring (SHM) is essential but can be expensive to perform. In an embodiment, a method includes sensing vibrations at a plurality of locations of a structure by a plurality of time-synchronized sensors. The method further includes determining a first set of dependencies of all sensors of the time-synchronized sensors at a first sample time to any sensors of a second sample time, and determining a second set of dependencies of all sensors of the time-synchronized sensors at the second sample time to any sensors of a third sample time. The second sample time is later than the first sample time, and the third sample time is later than the second sample time. The method then determines whether the structure has changed if the first set of dependencies is different from the second set of dependencies. Therefore, automated SHM can ensure safety at a lower cost to building owners.Type: ApplicationFiled: February 1, 2016Publication date: August 3, 2017Inventors: William T. Freeman, Oral Buyukozturk, John W. Fisher, III, Frederic Durand, Hossein Mobahi, Neal Wadhwa, Zoran Dzunic, Justin G. Chen, James Long, Reza Mohammadi Ghazi, Theodericks Johannes Smit, Sergio Daniel Kapusta
-
Patent number: 9710917Abstract: An imaging method and corresponding apparatus according to an embodiment of the present invention enables measurement and visualization of fluid flow. An embodiment method includes obtaining video captured by a video camera with an imaging plane. Representations of motions in the video are correlated. A textured background of the scene can be modeled as stationary, with a refractive field translating between background and video camera. This approach offers multiple advantages over conventional fluid flow visualization, including an ability to use ordinary video equipment outside a laboratory without particle injection. Even natural backgrounds can be used, and fluid motion can be distinguished from refraction changes. Depth and three-dimensional information can be recovered using stereo video, and uncertainty methods can enhance measurement robustness where backgrounds are less textured. Example applications can include avionics and hydrocarbon leak detection.Type: GrantFiled: May 15, 2014Date of Patent: July 18, 2017Assignee: Massachusetts Institute of TechnologyInventors: William T. Freeman, Frederic Durand, Tianfan Xue, Michael Rubinstein, Neal Wadhwa