Patents by Inventor T. Warren Weeks, Jr.

T. Warren Weeks, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150287792
    Abstract: The invention provides semiconductor materials including a gallium nitride material layer formed on a silicon substrate and methods to form the semiconductor materials. The semiconductor materials include a transition layer formed between the silicon substrate and the gallium nitride material layer. The transition layer is compositionally-graded to lower stresses in the gallium nitride material layer which can result from differences in thermal expansion rates between the gallium nitride material and the substrate. The lowering of stresses in the gallium nitride material layer reduces the tendency of cracks to form. Thus, the invention enables the production of semiconductor materials including gallium nitride material layers having few or no cracks. The semiconductor materials may be used in a number of microelectronic and optical applications.
    Type: Application
    Filed: June 18, 2015
    Publication date: October 8, 2015
    Inventors: T. Warren Weeks, JR., Edwin L. Piner, Thomas Gehrke, Kevin J. Linthicum
  • Publication number: 20150187880
    Abstract: The invention provides semiconductor materials including a gallium nitride material layer formed on a silicon substrate and methods to form the semiconductor materials. The semiconductor materials include a transition layer formed between the silicon substrate and the gallium nitride material layer. The transition layer is compositionally-graded to lower stresses in the gallium nitride material layer which can result from differences in thermal expansion rates between the gallium nitride material and the substrate. The lowering of stresses in the gallium nitride material layer reduces the tendency of cracks to form. Thus, the invention enables the production of semiconductor materials including gallium nitride material layers having few or no cracks. The semiconductor materials may be used in a number of microelectronic and optical applications.
    Type: Application
    Filed: December 22, 2014
    Publication date: July 2, 2015
    Inventors: T. Warren Weeks, JR., Edwin Lanier Piner, Thomas Gehrke, Kevin J. Linthicum
  • Patent number: 9064775
    Abstract: The invention provides semiconductor materials including a gallium nitride material layer formed on a silicon substrate and methods to form the semiconductor materials. The semiconductor materials include a transition layer formed between the silicon substrate and the gallium nitride material layer. The transition layer is compositionally-graded to lower stresses in the gallium nitride material layer which can result from differences in thermal expansion rates between the gallium nitride material and the substrate. The lowering of stresses in the gallium nitride material layer reduces the tendency of cracks to form. Thus, the invention enables the production of semiconductor materials including gallium nitride material layers having few or no cracks. The semiconductor materials may be used in a number of microelectronic and optical applications.
    Type: Grant
    Filed: August 5, 2014
    Date of Patent: June 23, 2015
    Assignee: International Rectifier Corporation
    Inventors: T. Warren Weeks, Jr., Edwin Lanier Piner, Thomas Gehrke, Kevin J. Linthicum
  • Publication number: 20150108495
    Abstract: The invention provides semiconductor materials including a gallium nitride material layer formed on a silicon substrate and methods to form the semiconductor materials. The semiconductor materials include a transition layer formed between the silicon substrate and the gallium nitride material layer. The transition layer is compositionally-graded to lower stresses in the gallium nitride material layer which can result from differences in thermal expansion rates between the gallium nitride material and the substrate. The lowering of stresses in the gallium nitride material layer reduces the tendency of cracks to form. Thus, the invention enables the production of semiconductor materials including gallium nitride material layers having few or no cracks. The semiconductor materials may be used in a number of microelectronic and optical applications.
    Type: Application
    Filed: December 22, 2014
    Publication date: April 23, 2015
    Inventors: T. Warren Weeks, JR., Edwin Lanier Piner, Thomas Gehrke, Kevin J. Linthicum
  • Patent number: 8937335
    Abstract: The invention provides semiconductor materials including a gallium nitride material layer formed on a silicon substrate and methods to form the semiconductor materials. The semiconductor materials include a transition layer formed between the silicon substrate and the gallium nitride material layer. The transition layer is compositionally-graded to lower stresses in the gallium nitride material layer which can result from differences in thermal expansion rates between the gallium nitride material and the substrate. The lowering of stresses in the gallium nitride material layer reduces the tendency of cracks to form. Thus, the invention enables the production of semiconductor materials including gallium nitride material layers having few or no cracks. The semiconductor materials may be used in a number of microelectronic and optical applications.
    Type: Grant
    Filed: November 19, 2013
    Date of Patent: January 20, 2015
    Assignee: International Rectifier Corporation
    Inventors: T. Warren Weeks, Jr., Edwin L. Piner, Thomas Gehrke, Kevin J. Linthicum
  • Patent number: 8928035
    Abstract: The invention provides semiconductor materials including a gallium nitride material layer formed on a silicon substrate and methods to form the semiconductor materials. The semiconductor materials include a transition layer formed between the silicon substrate and the gallium nitride material layer. The transition layer is compositionally-graded to lower stresses in the gallium nitride material layer which can result from differences in thermal expansion rates between the gallium nitride material and the substrate. The lowering of stresses in the gallium nitride material layer reduces the tendency of cracks to form. Thus, the invention enables the production of semiconductor materials including gallium nitride material layers having few or no cracks. The semiconductor materials may be used in a number of microelectronic and optical applications.
    Type: Grant
    Filed: November 19, 2013
    Date of Patent: January 6, 2015
    Assignee: International Rectifier Corporation
    Inventors: T. Warren Weeks, Jr., Edwin L. Piner, Thomas Gehrke, Kevin J. Linthicum
  • Patent number: 8928034
    Abstract: The invention provides semiconductor materials including a gallium nitride material layer formed on a silicon substrate and methods to form the semiconductor materials. The semiconductor materials include a transition layer formed between the silicon substrate and the gallium nitride material layer. The transition layer is compositionally-graded to lower stresses in the gallium nitride material layer which can result from differences in thermal expansion rates between the gallium nitride material and the substrate. The lowering of stresses in the gallium nitride material layer reduces the tendency of cracks to form. Thus, the invention enables the production of semiconductor materials including gallium nitride material layers having few or no cracks. The semiconductor materials may be used in a number of microelectronic and optical applications.
    Type: Grant
    Filed: November 19, 2013
    Date of Patent: January 6, 2015
    Assignee: International Rectifier Corporation
    Inventors: T. Warren Weeks, Jr., Edwin L. Piner, Thomas Gehrke, Kevin J. Linthicum
  • Publication number: 20140353680
    Abstract: The invention provides semiconductor materials including a gallium nitride material layer formed on a silicon substrate and methods to form the semiconductor materials. The semiconductor materials include a transition layer formed between the silicon substrate and the gallium nitride material layer. The transition layer is compositionally-graded to lower stresses in the gallium nitride material layer which can result from differences in thermal expansion rates between the gallium nitride material and the substrate. The lowering of stresses in the gallium nitride material layer reduces the tendency of cracks to form. Thus, the invention enables the production of semiconductor materials including gallium nitride material layers having few or no cracks. The semiconductor materials may be used in a number of microelectronic and optical applications.
    Type: Application
    Filed: August 5, 2014
    Publication date: December 4, 2014
    Inventors: T. Warren Weeks, JR., Edwin Lanier Piner, Thomas Gehrke, Kevin J. Linthicum
  • Publication number: 20140131659
    Abstract: The invention provides semiconductor materials including a gallium nitride material layer formed on a silicon substrate and methods to form the semiconductor materials. The semiconductor materials include a transition layer formed between the silicon substrate and the gallium nitride material layer. The transition layer is compositionally-graded to lower stresses in the gallium nitride material layer which can result from differences in thermal expansion rates between the gallium nitride material and the substrate. The lowering of stresses in the gallium nitride material layer reduces the tendency of cracks to form. Thus, the invention enables the production of semiconductor materials including gallium nitride material layers having few or no cracks. The semiconductor materials may be used in a number of microelectronic and optical applications.
    Type: Application
    Filed: November 19, 2013
    Publication date: May 15, 2014
    Applicant: International Rectifier Corporation
    Inventors: T. Warren Weeks, JR., Edwin L. Piner, Thomas Gehrke, Kevin J. Linthicum
  • Publication number: 20140097446
    Abstract: The invention provides semiconductor materials including a gallium nitride material layer formed on a silicon substrate and methods to form the semiconductor materials. The semiconductor materials include a transition layer formed between the silicon substrate and the gallium nitride material layer. The transition layer is compositionally-graded to lower stresses in the gallium nitride material layer which can result from differences in thermal expansion rates between the gallium nitride material and the substrate. The lowering of stresses in the gallium nitride material layer reduces the tendency of cracks to form. Thus, the invention enables the production of semiconductor materials including gallium nitride material layers having few or no cracks. The semiconductor materials may be used in a number of microelectronic and optical applications.
    Type: Application
    Filed: November 19, 2013
    Publication date: April 10, 2014
    Applicant: International Rectifier Corporation
    Inventors: T. Warren Weeks, Jr., Edwin L. Piner, Thomas Gehrke, Kevin J. Linthicum
  • Publication number: 20140077222
    Abstract: The invention provides semiconductor materials including a gallium nitride material layer formed on a silicon substrate and methods to form the semiconductor materials. The semiconductor materials include a transition layer formed between the silicon substrate and the gallium nitride material layer. The transition layer is compositionally-graded to lower stresses in the gallium nitride material layer which can result from differences in thermal expansion rates between the gallium nitride material and the substrate. The lowering of stresses in the gallium nitride material layer reduces the tendency of cracks to form. Thus, the invention enables the production of semiconductor materials including gallium nitride material layers having few or no cracks. The semiconductor materials may be used in a number of microelectronic and optical applications.
    Type: Application
    Filed: November 19, 2013
    Publication date: March 20, 2014
    Applicant: INTERNATIONAL RECTIFIER CORPORATION
    Inventors: T. Warren Weeks, JR., Edwin L. Piner, Thomas Gehrke, Kevin J. Linthicum
  • Patent number: 8592862
    Abstract: The invention provides semiconductor materials including a gallium nitride material layer formed on a silicon substrate and methods to form the semiconductor materials. The semiconductor materials include a transition layer formed between the silicon substrate and the gallium nitride material layer. The transition layer is compositionally-graded to lower stresses in the gallium nitride material layer which can result from differences in thermal expansion rates between the gallium nitride material and the substrate. The lowering of stresses in the gallium nitride material layer reduces the tendency of cracks to form. Thus, the invention enables the production of semiconductor materials including gallium nitride material layers having few or no cracks. The semiconductor materials may be used in a number of microelectronic and optical applications.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: November 26, 2013
    Assignee: International Rectifier Corporation
    Inventors: T. Warren Weeks, Jr., Edwin L. Piner, Thomas Gehrke, Kevin J. Linthicum
  • Patent number: 8344417
    Abstract: The invention provides semiconductor materials including a gallium nitride material layer formed on a silicon substrate and methods to form the semiconductor materials. The semiconductor materials include a transition layer formed between the silicon substrate and the gallium nitride material layer. The transition layer is compositionally-graded to lower stresses in the gallium nitride material layer which can result from differences in thermal expansion rates between the gallium nitride material and the substrate. The lowering of stresses in the gallium nitride material layer reduces the tendency of cracks to form. Thus, the invention enables the production of semiconductor materials including gallium nitride material layers having few or no cracks. The semiconductor materials may be used in a number of microelectronic and optical applications.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: January 1, 2013
    Assignee: International Rectifier Corporation
    Inventors: T. Warren Weeks, Jr., Edwin L. Piner, Thomas Gehrke, Kevin J. Linthicum
  • Publication number: 20120119223
    Abstract: The invention provides semiconductor materials including a gallium nitride material layer formed on a silicon substrate and methods to form the semiconductor materials. The semiconductor materials include a transition layer formed between the silicon substrate and the gallium nitride material layer. The transition layer is compositionally-graded to lower stresses in the gallium nitride material layer which can result from differences in thermal expansion rates between the gallium nitride material and the substrate. The lowering of stresses in the gallium nitride material layer reduces the tendency of cracks to form. Thus, the invention enables the production of semiconductor materials including gallium nitride material layers having few or no cracks. The semiconductor materials may be used in a number of microelectronic and optical applications.
    Type: Application
    Filed: January 27, 2012
    Publication date: May 17, 2012
    Inventors: T. Warren Weeks, JR., Edwin L. Piner, Thomas Gehrke, Kevin J. Linthicum
  • Patent number: 8105921
    Abstract: The invention provides semiconductor materials including a gallium nitride material layer formed on a silicon substrate and methods to form the semiconductor materials. The semiconductor materials include a transition layer formed between the silicon substrate and the gallium nitride material layer. The transition layer is compositionally-graded to lower stresses in the gallium nitride material layer which can result from differences in thermal expansion rates between the gallium nitride material and the substrate. The lowering of stresses in the gallium nitride material layer reduces the tendency of cracks to form. Thus, the invention enables the production of semiconductor materials including gallium nitride material layers having few or no cracks. The semiconductor materials may be used in a number of microelectronic and optical applications.
    Type: Grant
    Filed: December 24, 2008
    Date of Patent: January 31, 2012
    Assignee: International Rectifier Corporation
    Inventors: T. Warren Weeks, Jr., Edwin Lanier Piner, Thomas Gehrke, Kevin J. Linthicum
  • Publication number: 20090104758
    Abstract: The invention provides semiconductor materials including a gallium nitride material layer formed on a silicon substrate and methods to form the semiconductor materials. The semiconductor materials include a transition layer formed between the silicon substrate and the gallium nitride material layer. The transition layer is compositionally-graded to lower stresses in the gallium nitride material layer which can result from differences in thermal expansion rates between the gallium nitride material and the substrate. The lowering of stresses in the gallium nitride material layer reduces the tendency of cracks to form. Thus, the invention enables the production of semiconductor materials including gallium nitride material layers having few or no cracks. The semiconductor materials may be used in a number of microelectronic and optical applications.
    Type: Application
    Filed: December 24, 2008
    Publication date: April 23, 2009
    Applicant: Nitronex Corporation
    Inventors: T. Warren Weeks, JR., Edwin L. Piner, Thomas Gehrke, Kevin J. Linthicum
  • Patent number: 7485512
    Abstract: A method of compensating resistivity of a near-surface region of a substrate includes epitaxially growing a buffer layer on the substrate, wherein the buffer is grown as having a dopant concentration as dependent on resistivity and conductivity of the substrate, so as to deplete residual or excess charge within the near-surface region of the substrate. The dopant profile of the buffer layer be smoothly graded, or may consist of sub-layers of different dopant concentration, to also provide a highly resistive upper portion of the buffer layer ideal for subsequent device growth. Also, the buffer layer may be doped with carbon, and aluminum may be used to getter the carbon during epitaxial growth.
    Type: Grant
    Filed: June 26, 2006
    Date of Patent: February 3, 2009
    Assignee: Cree, Inc.
    Inventors: Christopher Harris, Thomas Gehrke, T. Warren Weeks, Jr., Cem Basceri, Elif Berkman
  • Patent number: 7364988
    Abstract: A method of manufacturing a heterojunction device includes forming a first layer of p-type aluminum gallium nitride; forming a second layer of undoped gallium nitride on the first layer; and forming a third layer of aluminum gallium nitride on the second layer, to provide an electron gas between the second and third layers. A heterojunction between the first and second layers injects positive charge into the second layer to compensate and/or neutralize negative charge within the electron gas.
    Type: Grant
    Filed: June 8, 2005
    Date of Patent: April 29, 2008
    Assignee: Cree, Inc.
    Inventors: Christopher Harris, Thomas Gehrke, T. Warren Weeks, Jr., Cem Basceri
  • Patent number: 7326971
    Abstract: A heterojunction device includes a first layer of p-type aluminum gallium nitride; a second layer of undoped gallium nitride on the first layer; a third layer of aluminum gallium nitride on the second layer; and an electron gas between the second and third layers. A heterojunction between the first and second layers injects positive charge into the second layer to compensate and/or neutralize negative charge within the electron gas.
    Type: Grant
    Filed: June 8, 2005
    Date of Patent: February 5, 2008
    Assignee: Cree, Inc.
    Inventors: Christopher Harris, Thomas Gehrke, T. Warren Weeks, Jr., Cem Basceri
  • Patent number: 6649287
    Abstract: The invention provides semiconductor materials including a gallium nitride material layer formed on a silicon substrate and methods to form the semiconductor materials. The semiconductor materials include a transition layer formed between the silicon substrate and the gallium nitride material layer. The transition layer is compositionally-graded to lower stresses in the gallium nitride material layer which can result from differences in thermal expansion rates between the gallium nitride material and the substrate. The lowering of stresses in the gallium nitride material layer reduces the tendency of cracks to form. Thus, the invention enables the production of semiconductor materials including gallium nitride material layers having few or no cracks. The semiconductor materials may be used in a number of microelectronic and optical applications.
    Type: Grant
    Filed: December 14, 2000
    Date of Patent: November 18, 2003
    Assignee: Nitronex Corporation
    Inventors: T. Warren Weeks, Jr., Edwin L. Piner, Thomas Gehrke, Kevin J. Linthicum