Patents by Inventor Ta-Ching HSIAO

Ta-Ching HSIAO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230207386
    Abstract: A method of increasing the resistivity of a silicon carbide wafer includes providing a silicon carbide wafer with a first resistivity, and applying a microwave to treat the silicon carbide wafer. The treated silicon carbide wafer has a second resistivity. The second resistivity is higher than the first resistivity. The microwave treated silicon carbide wafer can be applied in a high-frequency device.
    Type: Application
    Filed: December 13, 2022
    Publication date: June 29, 2023
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Mao-Nan CHANG, Ta-Ching HSIAO, Kuo-Lun HUANG, Pei-Ying CHEN
  • Patent number: 11541351
    Abstract: A method for removing boron is provided, which includes (a) mixing a carbon source material and a silicon source material in a chamber to form a solid state mixture, (b) heating the solid state mixture to a temperature of 1000° C. to 1600° C., and adjusting the pressure of the chamber to 1 torr to 100 torr. The method also includes (c) conducting a gas mixture of a first carrier gas and water vapor into the chamber to remove boron from the solid state mixture, and (d) conducting a second carrier gas into the chamber.
    Type: Grant
    Filed: May 21, 2021
    Date of Patent: January 3, 2023
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Ta-Ching Hsiao, Chu-Pi Jeng, Kuo-Lun Huang, Mu-Hsi Sung, Keng-Yang Chen, Li-Duan Tsai
  • Publication number: 20210275965
    Abstract: A method for removing boron is provided, which includes (a) mixing a carbon source material and a silicon source material in a chamber to form a solid state mixture, (b) heating the solid state mixture to a temperature of 1000° C. to 1600° C., and adjusting the pressure of the chamber to 1 torr to 100 torr. The method also includes (c) conducting a gas mixture of a first carrier gas and water vapor into the chamber to remove boron from the solid state mixture, and (d) conducting a second carrier gas into the chamber.
    Type: Application
    Filed: May 21, 2021
    Publication date: September 9, 2021
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Ta-Ching HSIAO, Chu-Pi JENG, Kuo-Lun HUANG, Mu-Hsi SUNG, Keng-Yang CHEN, Li-Duan TSAI
  • Patent number: 11052348
    Abstract: A method for removing boron is provided, which includes (a) mixing a carbon source material and a silicon source material in a chamber to form a solid state mixture, (b) heating the solid state mixture to a temperature of 1000° C. to 1600° C., and adjusting the pressure of the chamber to 1 torr to 100 torr. The method also includes (c) conducting a gas mixture of a first carrier gas and water vapor into the chamber to remove boron from the solid state mixture, and (d) conducting a second carrier gas into the chamber.
    Type: Grant
    Filed: December 26, 2017
    Date of Patent: July 6, 2021
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Ta-Ching Hsiao, Chu-Pi Jeng, Kuo-Lun Huang, Mu-Hsi Sung, Keng-Yang Chen, Li-Duan Tsai
  • Patent number: 11046582
    Abstract: A method of purifying silicon carbide powder includes: providing a container with a surface coated by a nitrogen-removal metal layer, wherein the nitrogen-removal metal layer is tantalum, niobium, tungsten, or a combination thereof; putting a silicon carbide powder into the container to contact the nitrogen-removal metal layer; and heating the silicon carbide powder under an inert gas at a pressure of 400 torr to 760 torr at 1700° C. to 2300° C. for 2 to 10 hours, thereby reducing the nitrogen content of the silicon carbide powder.
    Type: Grant
    Filed: December 27, 2019
    Date of Patent: June 29, 2021
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Ta-Ching Hsiao, Chu-Pi Jeng, Mu-Hsi Sung, Kuo-Lun Huang
  • Publication number: 20210139330
    Abstract: A method of purifying silicon carbide powder includes: providing a container with a surface coated by a nitrogen-removal metal layer, wherein the nitrogen-removal metal layer is tantalum, niobium, tungsten, or a combination thereof; putting a silicon carbide powder into the container to contact the nitrogen-removal metal layer; and heating the silicon carbide powder under an inert gas at a pressure of 400 torr to 760 torr at 1700° C. to 2300° C. for 2 to 10 hours, thereby reducing the nitrogen content of the silicon carbide powder.
    Type: Application
    Filed: December 27, 2019
    Publication date: May 13, 2021
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Ta-Ching HSIAO, Chu-Pi JENG, Mu-Hsi SUNG, Kuo-Lun HUANG
  • Publication number: 20190176085
    Abstract: A method for removing boron is provided, which includes (a) mixing a carbon source material and a silicon source material in a chamber to form a solid state mixture, (b) heating the solid state mixture to a temperature of 1000° C. to 1600° C., and adjusting the pressure of the chamber to 1 torr to 100 torr. The method also includes (c) conducting a gas mixture of a first carrier gas and water vapor into the chamber to remove boron from the solid state mixture, and (d) conducting a second carrier gas into the chamber.
    Type: Application
    Filed: December 26, 2017
    Publication date: June 13, 2019
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Ta-Ching HSIAO, Chu-Pi JENG, Kuo-Lun HUANG, Mu-Hsi SUNG, Keng-Yang CHEN, Li-Duan TSAI
  • Patent number: 10214454
    Abstract: A method for manufacturing micropowder is provided, which includes (a) mixing a silicon precursor and a carbon precursor to form a mixture, and heating and keeping the mixture at 1600° C. to 1800° C. under a vacuum and non-oxygen condition for 120 to 180 minutes to form a silicon carbide powder; and (b) heating and keeping the silicon carbide powder at 1900° C. to 2100° C. under non-oxygen condition for 5 to 15 minutes, and then cooling and keeping the silicon carbide powder at 1800° C. to 2000° C. under the non-oxygen condition for 5 to 15 minutes to form micropowder, wherein the micropowder includes a silicon carbide core covered by a carbon film.
    Type: Grant
    Filed: July 20, 2018
    Date of Patent: February 26, 2019
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Ta-Ching Hsiao, Wen-Po Tu, Chu-Pi Jeng, Mu-Hsi Sung
  • Publication number: 20180327324
    Abstract: A method for manufacturing micropowder is provided, which includes (a) mixing a silicon precursor and a carbon precursor to form a mixture, and heating and keeping the mixture at 1600° C. to 1800° C. under a vacuum and non-oxygen condition for 120 to 180 minutes to form a silicon carbide powder; and (b) heating and keeping the silicon carbide powder at 1900° C. to 2100° C. under non-oxygen condition for 5 to 15 minutes, and then cooling and keeping the silicon carbide powder at 1800° C. to 2000° C. under the non-oxygen condition for 5 to 15 minutes to form micropowder, wherein the micropowder includes a silicon carbide core covered by a carbon film.
    Type: Application
    Filed: July 20, 2018
    Publication date: November 15, 2018
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Ta-Ching HSIAO, Wen-Po TU, Chu-Pi JENG, Mu-Hsi SUNG
  • Patent number: 10059631
    Abstract: A method for manufacturing micropowder is provided, which includes (a) mixing a silicon precursor and a carbon precursor to form a mixture, and heating and keeping the mixture at 1600° C. to 1800° C. under a vacuum and non-oxygen condition for 120 to 180 minutes to form a silicon carbide powder; and (b) heating and keeping the silicon carbide powder at 1900° C. to 2100° C. under non-oxygen condition for 5 to 15 minutes, and then cooling and keeping the silicon carbide powder at 1800° C. to 2000° C. under the non-oxygen condition for 5 to 15 minutes to form micropowder, wherein the micropowder includes a silicon carbide core covered by a carbon film.
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: August 28, 2018
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Ta-Ching Hsiao, Wen-Po Tu, Chu-Pi Jeng, Mu-Hsi Sung
  • Publication number: 20180134625
    Abstract: A method for manufacturing micropowder is provided, which includes (a) mixing a silicon precursor and a carbon precursor to form a mixture, and heating and keeping the mixture at 1600° C. to 1800° C. under a vacuum and non-oxygen condition for 120 to 180 minutes to form a silicon carbide powder; and (b) heating and keeping the silicon carbide powder at 1900° C. to 2100° C. under non-oxygen condition for 5 to 15 minutes, and then cooling and keeping the silicon carbide powder at 1800° C. to 2000° C. under the non-oxygen condition for 5 to 15 minutes to form micropowder, wherein the micropowder includes a silicon carbide core covered by a carbon film.
    Type: Application
    Filed: December 21, 2016
    Publication date: May 17, 2018
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Ta-Ching HSIAO, Wen-Po TU, Chu-Pi JENG, Mu-Hsi SUNG