Patents by Inventor Ta-Fu Hsu

Ta-Fu Hsu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240153943
    Abstract: Various embodiments of the present disclosure are directed towards a semiconductor device. The semiconductor device comprises a source region and a drain region in a substrate and laterally spaced. A gate stack is over the substrate and between the source region and the drain region. The drain region includes two or more first doped regions having a first doping type in the substrate. The drain region further includes one or more second doped regions in the substrate. The first doped regions have a greater concentration of first doping type dopants than the second doped regions, and each of the second doped regions is disposed laterally between two neighboring first doped regions.
    Type: Application
    Filed: January 5, 2024
    Publication date: May 9, 2024
    Inventors: Sheng-Fu Hsu, Ta-Yuan Kung, Chen-Liang Chu, Chih-Chung Tsai
  • Patent number: 11960201
    Abstract: The present disclosure describes a method of patterning a semiconductor wafer using extreme ultraviolet lithography (EUVL). The method includes receiving an EUVL mask that includes a substrate having a low temperature expansion material, a reflective multilayer over the substrate, a capping layer over the reflective multilayer, and an absorber layer over the capping layer. The method further includes patterning the absorber layer to form a trench on the EUVL mask, wherein the trench has a first width above a target width. The method further includes treating the EUVL mask with oxygen plasma to reduce the trench to a second width, wherein the second width is below the target width. The method may also include treating the EUVL mask with nitrogen plasma to protect the capping layer, wherein the treating of the EUVL mask with the nitrogen plasma expands the trench to a third width at the target width.
    Type: Grant
    Filed: May 15, 2023
    Date of Patent: April 16, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Pei-Cheng Hsu, Chun-Fu Yang, Ta-Cheng Lien, Hsin-Chang Lee
  • Patent number: 11916060
    Abstract: Various embodiments of the present disclosure are directed towards a semiconductor device. The semiconductor device comprises a source region and a drain region in a substrate and laterally spaced. A gate stack is over the substrate and between the source region and the drain region. The drain region includes two or more first doped regions having a first doping type in the substrate. The drain region further includes one or more second doped regions in the substrate. The first doped regions have a greater concentration of first doping type dopants than the second doped regions, and each of the second doped regions is disposed laterally between two neighboring first doped regions.
    Type: Grant
    Filed: June 21, 2022
    Date of Patent: February 27, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Sheng-Fu Hsu, Ta-Yuan Kung, Chen-Liang Chu, Chih-Chung Tsai
  • Publication number: 20230267717
    Abstract: A method for searching a path by using a 3D reconstructed map includes: receiving 3D point-cloud map information and 3D material map information; clustering the 3D point-cloud map information with a clustering algorithm to obtain clustering information, and identifying material attributes of objects in the 3D point-cloud map information with a material neural network model to obtain material attribute information; fusing the those map information based on their coordinate information, thereby outputting fused map information; identifying obstacle areas and non-obstacle areas in the fused map information based on an obstacle neural network model, the clustering information, and the material attribute information; and generating 3D path information according to the non-obstacle areas. Since the 3D path information is generated based on those map information, the obstacle areas and flight spaces are effectively determined to generate an accurate flight path.
    Type: Application
    Filed: May 26, 2022
    Publication date: August 24, 2023
    Inventors: Mang Ou-Yang, Yung-Jhe Yan, Ming-Da Jiang, Ta-Fu Hsu, Shao-Chun Yeh, Kun-Hsiang Chen, Tzung-Cheng Chen