Patents by Inventor Tadahiko Kobayashi

Tadahiko Kobayashi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160155548
    Abstract: The magnet has a composition expressed by RpFeqMrCutCo100-p-q-r-t. The magnet has a metallic structure including a main phase having a Th2Zn17 crystal phase. The main phase has crystal grains. 5% or less of the crystal grains having a grain diameter equal to or smaller than 10 ?m, 40% or less of the crystal grains having crystal orientation perpendicular to (001) plane of the Th2Zn17 crystal phase in a direction deviated 30 degrees or more relative to an axis of easy magnetization.
    Type: Application
    Filed: March 11, 2015
    Publication date: June 2, 2016
    Inventors: Yosuke Horiuchi, Shinya Sakurada, Masaya Hagiwara, Tsuyoshi Kobayashi, Tadahiko Kobayashi
  • Patent number: 9310108
    Abstract: There are provided a magnetic material for magnetic refrigeration improving a magnetic refrigeration efficiency by including a wide operation temperature range and a magnetic refrigeration apparatus and a magnetic refrigeration system using the magnetic material. The magnetically refrigerating magnetic material is formed of a magnetic material shown by a composition formula of Gd100-x-yZrxYy, wherein 0<x<3.4 as well as 0?y?13.5, and the magnetic refrigeration apparatus and the magnetic refrigeration system uses the magnetic material. It is preferable that the magnetic material be approximately spherical magnetic particles having a maximum diameter of 0.3 mm or more to 2 mm or less.
    Type: Grant
    Filed: September 2, 2009
    Date of Patent: April 12, 2016
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shiori Kaji, Akiko Saito, Tadahiko Kobayashi
  • Publication number: 20160086702
    Abstract: The embodiments provide a high-performance permanent magnet. The permanent magnet includes a sintered body having a composition expressed by a composition formula RpFeqMrCutCo100-p-q-r-t, with carbon in a range from 50 mass ppm to 1500 mass ppm. The sintered body also includes a metallic structure. The metallic structure includes a main phase having a Th2Zn17 crystal phase, and a secondary phase having a carbide phase of the M element of the composition formula. A ratio (I2/I1) of a maximum intensity I2 of a diffraction peak at an angle 2? in a range from 37.5 degrees to 38.5 degrees to a maximum intensity I1 of a diffraction peak at the angle 2? in a range from 32.5 degrees to 33.5 degrees is greater than 25 but no greater than 80 in an X-ray diffraction pattern obtained by applying an X-ray diffraction measuring method to the sintered body.
    Type: Application
    Filed: March 11, 2015
    Publication date: March 24, 2016
    Inventors: Yosuke Horiuchi, Shinya Sakurada, Masaya Hagiwara, Tsuyoshi Kobayashi, Tadahiko Kobayashi, Naoyuki Sanada
  • Publication number: 20150270039
    Abstract: The invention provides a high-performance permanent magnet. The permanent magnet has a composition that is expressed by a composition formula RpFeqMrCutCo100-p-q-r-t, where R is at least one element selected from a rare earth element, M is at least one element selected from the group consisting of Zr, Ti, and Hf, p is a number satisfying 10.8?p?12.5 atomic percent, q is a number satisfying 25?q?40 atomic percent, r is a number satisfying 0.88?r?4.5 atomic percent, and t is a number satisfying 3.5?t?13.5 atomic percent. The permanent magnet also has a metallic structure that includes a main phase having a Th2Zn17 crystal phase, and a Cu-M rich phase having a higher Cu concentration and a higher M concentration than the main phase.
    Type: Application
    Filed: March 3, 2015
    Publication date: September 24, 2015
    Inventors: Yosuke Horiuchi, Shinya Sakurada, Keiko Okamoto, Masaya Hagiwara, Tsuyoshi Kobayashi, Masaki Endo, Tadahiko Kobayashi, Naoyuki Sanada
  • Publication number: 20150270038
    Abstract: A high-performance permanent magnet is provided. A permanent magnet has a composition expressed by a composition formula: RpFeqMrCutCo100-p-q-r-t. The permanent magnet also has a metallic structure including a main phase and a grain boundary phase arranged between crystal grains of the main phase. The crystal grains satisfy a formula: 0.001?|(100/p1max)?(100/p1min)|?1.2, where p1 is a concentration of the R element in each of the crystal grains (atomic percent), p1max is a maximum value of the p1 in all the crystal grains, and p1min is a minimum value of the p1 in all the crystal grains.
    Type: Application
    Filed: March 3, 2015
    Publication date: September 24, 2015
    Inventors: Masaki Endo, Shinya Sakurada, Yosuke Horiuchi, Naoyuki Sanada, Masaya Hagiwara, Tadahiko Kobayashi, Tsuyoshi Kobayashi
  • Publication number: 20150270040
    Abstract: A high performance permanent magnet is provided. The permanent magnet includes a composition represented by a composition formula: RpFeqMrCutCo100-p-q-t, and a metallic structure including cell phases having a Th2Zn17 crystal phase and Cu-rich phases having higher Cu concentration than the cell phases. An average diameter of the cell phases is 220 nm or less, and in a numeric value range from a minimum diameter to a maximum diameter of the cell phases, a ratio of a number of cell phases having a diameter in a numeric value range of less than upper 20% from the maximum diameter is 20% or less of all the cell phases.
    Type: Application
    Filed: March 18, 2015
    Publication date: September 24, 2015
    Inventors: Yosuke Horiuchi, Shinya Sakurada, Keiko Okamoto, Masaya Hagiwara, Tsuyoshi Kobayashi, Masaki Endo, Tadahiko Kobayashi, Naoyuki Sanada
  • Publication number: 20150228385
    Abstract: A permanent magnet includes: a composition expressed by a composition formula: RpFeqMrCutCo100-p-q-r-t (R is at least one element selected from rare-earth elements, M is at least one element selected from Zr, Ti, and Hf, 10.5?p?12.5 at %, 23?q?40 at %, 0.88?r?4.5 at %, 4.5?t?10.7 at %); and a metal structure containing a Th2Zn17 crystal phase and a Cu-rich phase having a Cu concentration higher than that of the Th2Zn17 crystal phase. In a cross section including a c-axis of the Th2Zn17 crystal phase, a number of intersections of the Cu-rich phases existing in an area of 1 ?m square is 10 or more.
    Type: Application
    Filed: March 18, 2015
    Publication date: August 13, 2015
    Inventors: Yosuke Horiuchi, Shinya Sakurada, Keiko Okamoto, Masaya Hagiwara, Tsuyoshi Kobayashi, Masaki Endo, Tadahiko Kobayashi
  • Publication number: 20150221422
    Abstract: A permanent magnet of an embodiment includes: a composition represented by a composition formula: R(FepMqCurCo1-p-q-r)z, where R is at least one element selected from rare-earth elements, M is at least one element selected from Zr, Ti, and Hf, and relations of 0.3?p?0.4, 0.01?q?0.05, 0.01?r?0.1, and 7?z?8.5 (atomic ratio) are satisfied; and a structure including a cell phase having a Th2Zn17 crystal phase, and a cell wall phase existing to surround the cell phase. An average magnetization of the cell wall phase is 0.2 T or less.
    Type: Application
    Filed: March 18, 2015
    Publication date: August 6, 2015
    Inventors: Shinya Sakurada, Yosuke Horiuchi, Keiko Okamoto, Masaya Hagiwara, Tsuyoshi Kobayashi, Masaki Endo, Tadahiko Kobayashi
  • Publication number: 20150194246
    Abstract: A permanent magnet includes: a composition expressed by a composition formula: RpFeqMrCutCo100-p-q-r-t (R is at least one element selected from rare-earth elements, M is at least one element selected from Zr, Ti, and Hf, 10.5?p?12.5 at %, 23?q?40 at %, 0.88?r?4.5 at %, 4.5?t?10.7 at %); and a metal structure containing a cell phase having a Th2Zn17 crystal phase, a cell wall phase, an M-rich platelet phase formed vertically to a c-axis of the Th2Zn17 crystal phase, and a Cu-rich platelet phase formed along the M-rich platelet phase.
    Type: Application
    Filed: March 18, 2015
    Publication date: July 9, 2015
    Inventors: Yosuke Horiuchi, Shinya Sakurada, Keiko Okamoto, Masaya Hagiwara, Tsuyoshi Kobayashi, Masaki Endo, Tadahiko Kobayashi
  • Publication number: 20150143952
    Abstract: In one embodiment, a permanent magnet includes a sintered compact having a composition represented by the composition formula: RpFeqMrCusCo100-p-q-r-s (where R is at least one element selected from rare earth elements, M is at least one element selected from Zr, Ti, and Hf, p is 10.5 atomic % or more and 12.5 atomic % or less, q is 24 atomic % or more and 40 atomic % or less, r is 0.88 atomic % or more and 4.5 atomic % or less, and s is 3.5 atomic % or more and 10.7 atomic % or less. The sintered compact has a structure having crystal grains constituted of a main phase including a Th2Zn17 crystal phase, and a crystal grain boundary. In the structure of the sintered compact, an average grain diameter of the crystal grains is 25 micrometer or more, and a volume fraction of the crystal grain boundary is 14% or less.
    Type: Application
    Filed: February 2, 2015
    Publication date: May 28, 2015
    Inventors: Yosuke Horiuchi, Shinya Sakurada, Keiko Okamoto, Masaya Hagiwara, Tsuyoshi Kobayashi, Masaki Endo, Tadahiko Kobayashi, Kazuomi Yoshima
  • Publication number: 20150096308
    Abstract: The magnetic refrigerating device according to one embodiment includes a fixed container filled with a refrigerant, the fixed container including a magnetic material container that is filled with a magnetic material and that can move in the fixed container and an elastic member provided at the end of the magnetic material container. The magnetic refrigerating device also includes a magnetic-field applying/removing mechanism that is provided at the outside of the fixed container, and that can apply and remove a magnetic field to and from the magnetic material and can generate a magnetic torque to the magnetic material container in moving direction of the magnetic material container.
    Type: Application
    Filed: December 12, 2014
    Publication date: April 9, 2015
    Inventors: Tadahiko Kobayashi, Akiko Saito, Shiori Kaji
  • Publication number: 20150033763
    Abstract: A composite material for magnetic refrigeration is provided. The composite material for magnetic refrigeration includes a magnetocaloric effect material having a magnetocaloric effect; and a heat conductive material dispersed in the magnetocaloric effect material. The heat conductive material is at least one selected from the group consisting of a carbon nanotube and a carbon nanofiber.
    Type: Application
    Filed: September 30, 2014
    Publication date: February 5, 2015
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Akiko SAITO, Norihiro TOMIMATSU, Tadahiko KOBAYASHI, Shiori KAJI, Ryosuke YAGI
  • Patent number: 8935927
    Abstract: The magnetic refrigerating device according to one embodiment includes a fixed container filled with a refrigerant, the fixed container including a magnetic material container that is filled with a magnetic material and that can move in the fixed container and an elastic member provided at the end of the magnetic material container. The magnetic refrigerating device also includes a magnetic-field applying/removing mechanism that is provided at the outside of the fixed container, and that can apply and remove a magnetic field to and from the magnetic material and can generate a magnetic torque to the magnetic material container in moving direction of the magnetic material container.
    Type: Grant
    Filed: April 4, 2011
    Date of Patent: January 20, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tadahiko Kobayashi, Akiko Saito, Shiori Kaji
  • Patent number: 8904807
    Abstract: A heat exchanger unit according to an exemplary embodiment includes: a plurality of heat exchangers that includes magnetic particles therein; and a connection section that is provided between the heat exchangers to connect the heat exchangers, the connection section including a solid-core member, a porous body or a combined substance of the solid-core member and the porous body. In the heat exchanger unit, the connection section invades partially into an inside of the heat exchanger connected thereto.
    Type: Grant
    Filed: April 4, 2011
    Date of Patent: December 9, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shiori Kaji, Tadahiko Kobayashi, Akiko Saito
  • Patent number: 8769965
    Abstract: A magnetic refrigeration material includes: at least one selected from the group consisting of Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm and Tb by a range of 4 to 15 atomic percentages; at least one selected from the group consisting of Fe, Co, Ni, Mn and Cr by a range of 60 to 93 atomic percentages; at least one selected from the group consisting of Si, C, Ge, Al, Ga and In by a range of 2.9 to 23.5 atomic percentages; and at least one selected from the group consisting of Ta, Nb and W by a range of 1.5 atomic percentages or less, wherein the magnetic refrigeration material includes a NaZn13 type crystal structure as a main phase.
    Type: Grant
    Filed: January 17, 2008
    Date of Patent: July 8, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hideyuki Tsuji, Akiko Saito, Tadahiko Kobayashi
  • Publication number: 20140139305
    Abstract: In one embodiment, a permanent magnet includes a sintered compact having a composition expressed by a composition formula: Rp1Feq1Mr1Cus1Co100-p1-q1-r1-s1 (R is a rare-earth element, M is at least one element selected from Zr, Ti, and Hf, 10?p1?13.3 at %, 25?q1?40.0 at %, 0.88?r1?5.4 at %, and 3.5?s1?13.5 at %). The sintered compact includes crystal grains each composed of a main phase including a Th2Zn17 crystal phase, and a Cu-rich phase having a composition with a high Cu concentration and an average thickness of 0.05 ?m or more and 2 ?m or less.
    Type: Application
    Filed: October 31, 2013
    Publication date: May 22, 2014
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yosuke Horiuchi, Shinya Sakurada, Keiko Okamoto, Masaya Hagiwara, Tsuyoshi Kobayashi, Masaki Endo, Tadahiko Kobayashi
  • Publication number: 20140139063
    Abstract: In one embodiment, a permanent magnet includes a sintered compact including: a composition expressed by a composition formula: RpFeqMrCusCo100-p-q-r-s (R is at least one element selected from rare-earth elements, M is at least one element selected from Zr, Ti, and Hf, 10?p?13.3 at %, 25?q?40 at %, 0.87?r?5.4 at %, and 3.5?s?13.5 at %); and a metallic structure having a main phase including a Th2Zn17 crystal phase, and an R-M-rich phase containing the element R whose concentration is 1.2 times or more an R concentration in the main phase and the element M whose concentration is 1.2 times or more an M concentration in the main phase. A volume fraction of the R-M-rich phase in the metallic structure is from 0.2% to 15%.
    Type: Application
    Filed: October 31, 2013
    Publication date: May 22, 2014
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yosuke Horiuchi, Shinya Sakurada, Keiko Okamoto, Masaya Hagiwara, Tsuyoshi Kobayashi, Masaki Endo, Tadahiko Kobayashi
  • Publication number: 20140116067
    Abstract: Magnetic materials, having: a composition represented by a general formula: (R1-yXy)x(Fe1-aMa)100-x where, R is at least one of element selected from the group consisting of La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb and Y, X is at least one of element selected from the group consisting of Ti, Zr and Hf, M is at least one of element selected from the group consisting of V, Cr, Mn, Ni, Cu, Zn, Nb, Mo, Ta, W, Al, Si, Ga and Ge, x is a value satisfying 4?x?20 atomic %, y is a value satisfying 0.01?y?0.9, and a is a value satisfying 0?a?0.2, wherein the magnetic material includes a Th2Ni17 crystal phase or a TbCu7 crystal phase as a main phase, that are useful for magnetic refrigeration.
    Type: Application
    Filed: January 6, 2014
    Publication date: May 1, 2014
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Shinya SAKURADA, Akiko SAITO, Tadahiko KOBAYASHI, Hideyuki TSUJI
  • Publication number: 20130255279
    Abstract: In a magnetic refrigeration device, magnetic bodies having a magnetocaloric effect and solid heat accumulation members having heat accumulation effect are arranged alternately with gaps therebetween. Magnetic field apply units start and stop application of magnetic fields to the magnetic bodies. A contact mechanism brings each of the magnetic bodies into contact with one of the solid heat accumulation members adjacent to the each magnetic body. Alternatively, the contact mechanism brings each of the solid heat accumulation members into contact with one of the magnetic bodies adjacent to the each solid heat accumulation members.
    Type: Application
    Filed: December 28, 2012
    Publication date: October 3, 2013
    Inventors: Norihiro TOMIMATSU, Toshiro HIRAOKA, Yasushi SANADA, Ryosuke YAGI, Akiko SAITO, Tadahiko KOBAYASHI, Shiori KAJI
  • Publication number: 20130232993
    Abstract: According to one embodiment, a heat exchanger includes a container, and a plurality of heat exchange components. The container is fed with a heat transport medium. The plurality of heat exchange components is provided with a prescribed spacing inside the container. The plurality of heat exchange components is provided along a flowing direction of the heat transport medium so as not to overlap at least partly as viewed in the flowing direction of the heat transport medium.
    Type: Application
    Filed: April 29, 2013
    Publication date: September 12, 2013
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Akiko SAITO, Tadahiko KOBAYASHI, Shiori KAJI