Patents by Inventor Tadashi Arikawa

Tadashi Arikawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11380602
    Abstract: Provided is a plating film containing Au and Tl, including Tl oxides including Tl2O on a surface of the plating film, a ratio of Tl atoms constituting Tl2O to a total of Tl atoms constituting the Tl oxides and Tl atoms constituting Tl simple substances on the surface being 40% or more.
    Type: Grant
    Filed: February 26, 2019
    Date of Patent: July 5, 2022
    Assignees: Sumitomo Electric Industries, Ltd., A.L.M.T. CORP.
    Inventors: Kengo Goto, Akihisa Hosoe, Tadashi Arikawa, Hiroya Sato, Masatoshi Nagashima, Shohei Murakami
  • Publication number: 20210013122
    Abstract: Provided is a plating film containing Au and Tl, including Tl oxides including Tl2O on a surface of the plating film, a ratio of Tl atoms constituting Tl2O to a total of Tl atoms constituting the Tl oxides and Tl atoms constituting Tl simple substances on the surface being 40% or more.
    Type: Application
    Filed: February 26, 2019
    Publication date: January 14, 2021
    Applicants: Sumitomo Electric Industries, Ltd., A.L.M.T. Corp.
    Inventors: Kengo GOTO, Akihisa HOSOE, Tadashi ARIKAWA, Hiroya SATO, Masatoshi NAGASHIMA, Shohei MURAKAMI
  • Patent number: 10215512
    Abstract: [Problem] To provide a heat spreader capable of removing heat from an element more efficiently and immediately than an existing one, and also capable of satisfactorily responding to further enhancement in performance and output of various apparatuses, and a method for efficiently manufacturing the same. [Solution] A heat spreader includes a Cu—Mo layer made of a Cu—Mo composite material and having an average thickness of less than or equal to 0.6 mm and a variation in thickness of less than or equal to 0.1 mm, and a Cu layer directly stacked on each of both surfaces thereof. A method for manufacturing the heat spreader includes planarizing a plate material of the Cu—Mo composite material constituting the Cu—Mo layer, and roll-bonding a Cu plate constituting the Cu layer to each of both surfaces thereof.
    Type: Grant
    Filed: May 13, 2015
    Date of Patent: February 26, 2019
    Assignee: A.L.M.T. Corp.
    Inventors: Hiroaki Oki, Tadashi Arikawa, Shouichi Inaba
  • Publication number: 20170198991
    Abstract: [Problem] To provide a heat spreader capable of removing heat from an element more efficiently and immediately than an existing one, and also capable of satisfactorily responding to further enhancement in performance and output of various apparatuses, and a method for efficiently manufacturing the same. [Solution] A heat spreader includes a Cu—Mo layer made of a Cu—Mo composite material and having an average thickness of less than or equal to 0.6 mm and a variation in thickness of less than or equal to 0.1 mm, and a Cu layer directly stacked on each of both surfaces thereof. A method for manufacturing the heat spreader includes planarizing a plate material of the Cu—Mo composite material constituting the Cu—Mo layer, and roll-bonding a Cu plate constituting the Cu layer to each of both surfaces thereof.
    Type: Application
    Filed: May 13, 2015
    Publication date: July 13, 2017
    Inventors: Hiroaki OKI, Tadashi ARIKAWA, Shouichi INABA
  • Patent number: 7547412
    Abstract: A composite material is a Mo—Cu based composite material having a Cu content of 30 to 70 weight % and containing a copper pool phase and an Mo—Cu based composite phase. The copper pool phase is contained in an amount of 10-50 weight %. A heat-sink member uses the composite material.
    Type: Grant
    Filed: October 28, 2003
    Date of Patent: June 16, 2009
    Assignee: A.L.M.T. Corporation
    Inventors: Masayuki Itoh, Tadashi Arikawa, Norio Hirayama, Yoshinari Amano, Nobuyuki Saitoh
  • Publication number: 20060246314
    Abstract: A material for a semiconductor-mounting heat dissipation substrate comprises a copper-molybdenum rolled composite obtained by impregnating melted copper into a void between powder particles of a molybdenum powder compact to obtain a molybdenum-copper composite and then rolling the composite. In a final rolling direction of a plate material, the coefficient of linear expansion is 8.3×10?6/K at 30-800° C. The material for a semiconductor-mounting heat dissipation substrate is superior in thermal conductivity to a CMC clad material and easy in machining by a punch press. The substrate material is used as a heat dissipation substrate (13) of a ceramic package (11).
    Type: Application
    Filed: June 23, 2006
    Publication date: November 2, 2006
    Inventors: Mitsuo Osada, Norio Hirayama, Tadashi Arikawa, Yoshinari Amano, Hidetoshi Maesato, Hidefumi Hayashi, Hiroshi Murai
  • Patent number: 7083759
    Abstract: A material for a semiconductor-mounting heat dissipation substrate comprises a copper-molybdenum rolled composite obtained by impregnating melted copper into a void between powder particles of a molybdenum powder compact to obtain a composite of molybdenum and copper and then rolling the composite. In a final rolling direction of a plate material, the coefficient of linear expansion is 8.3×10?6/K at 30–800° C. The material for a semiconductor-mounting heat dissipation substrate is superior in thermal conductivity to a CMC clad material and easy in machining by a punch press. The substrate material is used as a heat dissipation substrate (13) of a ceramic package (11).
    Type: Grant
    Filed: April 12, 2001
    Date of Patent: August 1, 2006
    Assignee: A.L.M.T. Corp.
    Inventors: Mitsuo Osada, Norio Hirayama, Tadashi Arikawa, Yoshinari Amano, Hidetoshi Maesato, Hidefumi Hayashi, Hiroshi Murai
  • Publication number: 20050287387
    Abstract: A composite material is a Mo—Cu based composite material having a Cu content of 30 to 70 weight % and containing a copper pool phase and an Mo—Cu based composite phase. The copper pool phase is contained in an amount of 10-50 weight %. A heat-sink member uses the composite material.
    Type: Application
    Filed: October 28, 2003
    Publication date: December 29, 2005
    Inventors: Masayuki Itoh, Tadashi Arikawa, Norio Hirayama, Yoshinari Amano, Nobuyuki Saitoh
  • Patent number: 6926861
    Abstract: A package to be mounted with semiconductor chips has a heat-radiating substrate having a thickness of smaller than 0.4 mm of a Cu—Mo composite as prepared by impregnating from 30 to 40% by mass of copper (Cu) melt into a green compact of molybdenum. The heat-radiating substrate is produced by preparing an Mo green compact through isostatic molding, mounting Cu on the Mo green compact, heating it to thereby impregnate copper into the Mo green compact to give a Cu—Mo composite, and rolling the Cu—Mo composite into a sheet substrate.
    Type: Grant
    Filed: September 29, 2003
    Date of Patent: August 9, 2005
    Assignee: Tokyo Tungsten Co., Ltd.
    Inventors: Norio Hirayama, Mitsuo Osada, Akira Ichida, Yoshinari Amano, Kiyoshi Asai, Hidetoshi Maesato, Tadashi Arikawa, Kenji Sakimae
  • Publication number: 20040056352
    Abstract: A package to be mounted with semiconductor chips has a heat-radiating substrate having a thickness of smaller than 0.4 mm of a Cu—Mo composite as prepared by impregnating from 30 to 40% by mass of copper (Cu) melt into a green compact of molybdenum. The heat-radiating substrate is produced by preparing an Mo green compact through isostatic molding, mounting Cu on the Mo green compact, heating it to thereby impregnate copper into the Mo green compact to give a Cu—Mo composite, and rolling the Cu—Mo composite into a sheet substrate.
    Type: Application
    Filed: September 29, 2003
    Publication date: March 25, 2004
    Applicant: TOKYO TUNGSTEN CO., LTD.
    Inventors: Norio Hirayama, Mitsuo Osada, Akira Ichida, Yoshinari Amano, Kiyoshi Asai, Hidetoshi Maesato, Tadashi Arikawa, Kenji Sakimae
  • Patent number: 6693353
    Abstract: A package to be mounted with semiconductor chips has a heat-radiating substrate having a thickness of smaller than 0.4 mm of a Cu—Mo composite as prepared by impregnating from 30 to 40% by mass of copper (Cu) melt into a green compact of molybdenum. The heat-radiating substrate is produced by preparing an Mo green compact through isostatic molding, mounting Cu on the Mo green compact, heating it to thereby impregnate copper into the Mo green compact to give a Cu—Mo composite, and rolling the Cu—Mo composite into a sheet substrate. In the isostatic molding process, at least two or more plates.
    Type: Grant
    Filed: February 18, 1999
    Date of Patent: February 17, 2004
    Assignee: Tokyo Tungsten Co., Ltd.
    Inventors: Norio Hirayama, Mitsuo Osada, Akira Ichida, Yoshinari Amano, Kiyoshi Asai, Hidetoshi Maesato, Tadashi Arikawa, Kenji Sakimae
  • Publication number: 20020191377
    Abstract: A material for a semiconductor-mounting heat dissipation substrate comprises a copper-molybdenum rolled composite obtained by impregnating melted copper into a void between powder particles of a molybdenum powder compact to obtain a composite of molybdenum and copper and then rolling the composite. In a final rolling direction of a plate material, the coefficient of linear expansion is 8.3×10−6/K at 30-800° C. The material for a semiconductor-mounting heat dissipation substrate is superior in thermal conductivity to a CMC clad material and easy in machining by a punch press. The substrate material is used as a heat dissipation substrate (13) of a ceramic package (11).
    Type: Application
    Filed: December 13, 2001
    Publication date: December 19, 2002
    Inventors: Mitsuo Osada, Norio Hirayama, Tadashi Arikawa, Yoshinaro Amano, Hidetoshi Maesato, Hidefumi Hayashi, Hiroshi Murai
  • Patent number: 6475429
    Abstract: A heat sink substrate comprises a Cu—Mo composite substrate composed of a molybdenum (Mo) green compact with which Copper (Cu) of 20-60 wt % is impregnated. It is preferable that the heat sink substrate is a rolled plate obtained by repeatedly warm rolling or cold rolling the Cu—Mo composite substrate and that the rolled plate does not include any fine void and unevenly impregnated copper, that is, copper and molybdenum are uniformly distributed therein.
    Type: Grant
    Filed: June 7, 2001
    Date of Patent: November 5, 2002
    Assignee: Tokyo Tungsten Co., Ltd.
    Inventors: Mitsuo Osada, Akira Ichida, Norio Hirayama, Kiyoshi Asai, Hidetoshi Maesato, Tadashi Arikawa
  • Publication number: 20020017346
    Abstract: A heat sink substrate comprises a Cu—Mo composite substrate composed of a molybdenum (Mo) green compact with which Copper (Cu) of 20-60 wt % is impregnated. It is preferable that the heat sink substrate is a rolled plate obtained by repeatedly warm rolling or cold rolling the Cu—Mo composite substrate and that the rolled plate does not include any fine void and unevenly impregnated copper, that is, copper and molybdenum are uniformly distributed therein.
    Type: Application
    Filed: June 7, 2001
    Publication date: February 14, 2002
    Inventors: Mitsuo Osada, Akira Ichida, Norio Hirayama, Kiyoshi Asai, Hidetoshi Maesato, Tadashi Arikawa
  • Patent number: 6271585
    Abstract: A heat sink substrate comprises a Cu—Mo composite substrate composed of a molybdenum (Mo) green compact with which Copper (Cu) of 20-60 wt % is impregnated. It is preferable that the heat sink substrate is a rolled plate obtained by repeatedly warm rolling or cold rolling the Cu—Mo composite substrate and that the rolled plate does not include any fine void and unevenly impregnated copper, that is, copper and molybdenum are uniformly distributed therein.
    Type: Grant
    Filed: July 7, 1998
    Date of Patent: August 7, 2001
    Assignee: Tokyo Tungsten Co., Ltd.
    Inventors: Mitsuo Osada, Akira Ichida, Norio Hirayama, Kiyoshi Asai, Hidetoshi Maesato, Tadashi Arikawa
  • Patent number: 5493153
    Abstract: In a plastic-packaged semiconductor device molded by a synthetic resin, a heat sink is formed by a sheet which has a thermal expansion coefficient between 9.0.times.10.sup.-6 /K and 23.times.10.sup.-6 /K and a thermal conductivity greater than 200 W/m.multidot.K, which are selected in relation to those of the synthetic resin. The sheet is manufactured by mixing a first metal of a high melting point with a second metal of a low melting point lower than the first metal and by pressing and sintering the mixture. The first and the second metal may be molybdenum and copper, respectively. Alternatively, the sheet may be a composite sheet composed of a molybdenum mesh interposed between a pair of aluminum layers or a stacked sheet composed of a sintered layer of a mixture of molybdenum and copper and a coated layer of either molybdenum or copper.
    Type: Grant
    Filed: November 26, 1993
    Date of Patent: February 20, 1996
    Assignee: Tokyo Tungsten Co., Ltd.
    Inventors: Tadashi Arikawa, Mitsuru Tsuchiya, Akira Ichida, Tadashi Igarashi