Patents by Inventor Tadashi FUJIMAKI

Tadashi FUJIMAKI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240055941
    Abstract: A geared motor includes a synchronous reluctance motor whose maximum rotational speed is 20000 rpm to 45000 rpm and in which rare earth bonded magnets are embedded in a rotor, and a speed reducer which reduces the rotational speed of the synchronous reluctance motor to a rotational speed in a usage range while increasing torque to a predetermined range. When a radius of the rotor is represented by R (cm) and a length of the rotor in an axial direction is represented by L (cm), the rotor has a size which satisfies conditions of 2 cm?R?6 cm and 2 cm?L?25 cm.
    Type: Application
    Filed: December 6, 2021
    Publication date: February 15, 2024
    Applicant: AICHI STEEL CORPORATION
    Inventors: Aki WATARAI, Hiroaki HIRANO, Masahiro KAYANO, Tadashi FUJIMAKI, Choongsik KIM, Hayato WATANABE, Kazunori ITO, Kazuya ISHIDA
  • Publication number: 20230128480
    Abstract: The present invention provides a manufacturing method for obtaining a compression-bonded magnet with which it is possible to achieve, at a high level, both a residual magnetic flux density (Br) and the magnitude of a reverse magnetic field (Hk) that reduces Br by 10%. The manufacturing method of the present invention includes a molding step of compressing a bonded magnet raw material composed of a compound or the like of magnetic powder and a binder resin in a heated and oriented magnetic field. The bonded magnet raw material has a mass ratio of the magnet powder of 90 to 95.7 mass% to a total of the magnet powder and the binder resin. The magnet powder includes coarse powder having an average particle diameter of 40 to 200 µm and fine powder having an average particle diameter of 1 to 10 µm. The coarse powder has a mass ratio of 60 to 90 mass% to a total of the coarse powder and the fine powder. The coarse powder includes rare earth anisotropic magnet powder subjected to hydrogen treatment.
    Type: Application
    Filed: March 24, 2021
    Publication date: April 27, 2023
    Applicant: AICHI STEEL CORPORATION
    Inventors: Yuki TSUGE, Tadashi FUJIMAKI
  • Patent number: 11165315
    Abstract: A manufacturing method for obtaining an interior permanent magnet-type inner rotor without thermal demagnetization due to shrink fitting to a rotating shaft includes: a shrink fitting step of heating a rotor core having slots and inserting a rotating shaft into a shaft hole to shrinkfit the rotor core; and a filling step of filling the rotor core slots in a residual heat state after the shrink fitting step with a flowable mixture of a binder resin heated to a flowable state and anisotropic magnet particles, in oriented magnetic fields This allows, in similar manufacturing steps, an inner rotor of which the magnetic poles are anisotropic bond magnets formed by solidifying the flowable mixture in the slots and a conventional inner rotor of which the magnetic poles are sintered magnets. This allows both the inner rotors concurrently and in parallel (mixed flow production) in an already existing IPM motor manufacturing line.
    Type: Grant
    Filed: May 24, 2019
    Date of Patent: November 2, 2021
    Assignee: AICHI STEEL CORPORATION
    Inventors: Tadashi Fujimaki, Hiroshi Matsuoka, Yoji Hashimoto
  • Patent number: 10454353
    Abstract: An apparatus for manufacturing an interior permanent magnet-type inner rotor and manufacturing method using the same. The apparatus including: a mold having a three-layer structure; the method including a shrink fitting step of heating a rotor core having slots; and a filling step of filling the rotor core slots in a residual heat state after the shrink fitting step with a flowable mixture of a binder resin heated to a flowable state and having anisotropic magnet particles, in oriented magnetic fields. This allows, in similar manufacturing steps, an inner rotor of which magnetic poles are anisotropic bond magnets formed by solidifying the flowable mixture in the slots and a conventional inner rotor of which the magnetic poles are sintered magnets. This allows both the inner rotors concurrently and in parallel (mixed flow production) in an already existing IPM motor manufacturing line.
    Type: Grant
    Filed: March 12, 2015
    Date of Patent: October 22, 2019
    Assignee: AICHI STEEL CORPORATION
    Inventors: Tadashi Fujimaki, Hiroshi Matsuoka, Yoji Hashimoto
  • Publication number: 20190280576
    Abstract: A manufacturing method for obtaining an interior permanent magnet-type inner rotor without thermal demagnetization due to shrink fitting to a rotating shaft includes: a shrink fitting step of heating a rotor core having slots and inserting a rotating shaft into a shaft hole to shrinkfit the rotor core; and a filling step of filling the rotor core slots in a residual heat state after the shrink fitting step with a flowable mixture of a binder resin heated to a flowable state and anisotropic magnet particles, in oriented magnetic fields This allows, in similar manufacturing steps, an inner rotor of which the magnetic poles are anisotropic bond magnets formed by solidifying the flowable mixture in the slots and a conventional inner rotor of which the magnetic poles are sintered magnets. This allows both the inner rotors concurrently and in parallel (mixed flow production) in an already existing IPM motor manufacturing line.
    Type: Application
    Filed: May 24, 2019
    Publication date: September 12, 2019
    Applicant: AICHI STEEL CORPORATION
    Inventors: Tadashi FUJIMAKI, Hiroshi MATSUOKA, Yoji HASHIMOTO
  • Publication number: 20170025933
    Abstract: A manufacturing method for obtaining an interior permanent magnet-type inner rotor without thermal demagnetization due to shrink fitting to a rotating shaft includes: a shrink fitting step of heating a rotor core having slots and inserting a rotating shaft into a shaft hole to shrink-fit the rotor core; and a filling step of filling the rotor core slots in a residual heat state after the shrink fitting step with a flowable mixture of a binder resin heated to a flowable state and anisotropic magnet particles, in oriented magnetic fields This allows, in similar manufacturing steps, an inner rotor of which the magnetic poles are anisotropic bond magnets formed by solidifying the flowable mixture in the slots and a conventional inner rotor of which the magnetic poles are sintered magnets. This allows both the inner rotors concurrently and in parallel (mixed flow production) in an already existing IPM motor manufacturing line.
    Type: Application
    Filed: March 12, 2015
    Publication date: January 26, 2017
    Applicant: AICHI STEEL CORPORATION
    Inventors: Tadashi FUJIMAKI, Hiroshi MATSUOKA, Yoji HASHIMOTO