Patents by Inventor Tadashi Sugihara

Tadashi Sugihara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11953384
    Abstract: A temperature measuring device includes an ultrasonic sensor attached to a rear surface side of the structural body having the multilayer structure, an acquisition unit configured to, through the ultrasonic sensor, acquire a signal of a reflected wave of an ultrasonic wave incident at the internal side of the structural body, an extraction unit configured to extract, from the signal of the reflected wave, a domain including a reflected wave reflected on a surface on the internal side of the structural body, and an identification unit configured to, based on a signal of the reflected wave in the extracted domain, identify the temperature of the surface on the internal side of the structural body.
    Type: Grant
    Filed: June 21, 2021
    Date of Patent: April 9, 2024
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Masaya Kawano, Masahiro Sugihara, Tadashi Kimura, Shinsuke Sato
  • Patent number: 5585574
    Abstract: A shaft having a magnetostrictive sensor measures torque applied to a shaft, as a shaft, without contact and utilizing reverse-magnetostrictive properties of magnetic alloys. The shaft includes a plurality of magnetic alloy layers, and the magnetosensitive torque detector is variously formed by diffusion bonding a magnetostrictive layer with a high magnetostrictive constant onto the shaft surface, by heat treating, adhesive fixation or the like bonding means. Methods for making the shaft are disclosed.
    Type: Grant
    Filed: February 14, 1994
    Date of Patent: December 17, 1996
    Assignee: Mitsubishi Materials Corporation
    Inventors: Tadashi Sugihara, Kazushi Yoshida, Kazutoshi Inoue, Ji-bin Yang, Isao Suzuki
  • Patent number: 5236889
    Abstract: 1. In the (Bi,Tl)-Ca-(Sr,Ba)-Cu-O based superconducting ceramics production process, a process for preparing superconducting ceramics characterized by(a) providing powders includingi) a compound of Bi oxide or Tl oxide,ii) a Ca compound,iii) an Sr compound or Ba compound, andiv) a Cu compoundas starting powders;(b) compounding and mixing powders from compounds of the starting powders, the compounds each having lower vapor pressure, i.e., powders from compound ii), compound iii), and compound iv) at a compounding ratio to obtain a mixture, and primarily calcining the mixture at a temperature of 850.degree. to 1050.degree. C., to form a Ca--(Sr,Ba)--Cu--O based oxide; and(c) further mixing the Ca--(Sr,Ba)--Cu--O based oxide with a compound having a higher vapor pressure, that is, the powder of compound i), at a compounding ratio, and secondarily calcining at a temperature of 500.degree. to 820.degree. C.
    Type: Grant
    Filed: November 27, 1989
    Date of Patent: August 17, 1993
    Assignee: Mitsubishi Materials Corporation
    Inventors: Tadashi Sugihara, Takuo Takeshita, Yukihiro Ouchi, Takeshi Sakurai
  • Patent number: 5077269
    Abstract: A target used for forming a thin film of a quinary superconductive oxide contains metal copper ranging between about 8% and about 40% by volume dispersed into a quaternary or a quinary complex oxide, and the metal copper improves the thermal conductivity and the electrical conductivity of the target, so that cracks are less liable to take place in the target and the target is applicable to a d.c. sputtering system, thereby decreasing the production cost of the thin film.
    Type: Grant
    Filed: June 8, 1989
    Date of Patent: December 31, 1991
    Assignee: Mitsubishi Metal Corporation
    Inventors: Tadashi Sugihara, Yukihiro Ohuchi, Takuo Takeshita
  • Patent number: 5075200
    Abstract: A process of forming a superconductive wiring strip incorporates a deposition of a raw material on a mask layer followed by a lift-off stage for patterning the wiring strip, and the mask layer is formed for the miniature wiring strip by using lithographic techniques.
    Type: Grant
    Filed: August 24, 1989
    Date of Patent: December 24, 1991
    Assignee: Mitsubishi Metal Corporation
    Inventors: Tadashi Sugihara, Yoshio Murakami, Takuo Takeshita
  • Patent number: 5059585
    Abstract: A method for fabricating a low resistivity target for sputtering a bismuth-calcium-strontium-copper oxide superconductor. The method includes the steps of: preparing ingredient powders of a calcium carbonate, a strontium carbonate and a copper oxide; producing a porous bulk body of a complex oxide from the ingredient powders; and impregnating molten bismuth into the porous bulk body of the complex oxide.
    Type: Grant
    Filed: April 21, 1989
    Date of Patent: October 22, 1991
    Assignee: Mitsubishi Metal Corporation
    Inventors: Tadashi Sugihara, Takuo Takeshita, Yukihiro Ohuchi
  • Patent number: 5049452
    Abstract: A target according to the present invention contains metallic copper ranging from about 8% to about 40% by volume and an oxide containing a rare earth metal such as yttrium and an alkaline earth metal, and has a metallic structure where the oxide is substantially uniformly dispersed into the metallic copper, so that a large thermal conductivity, great mechanical strength and a low electric resistivity are achieved.
    Type: Grant
    Filed: August 9, 1989
    Date of Patent: September 17, 1991
    Assignee: Mitsubishi Metal Corporation
    Inventors: Takuo Takeshita, Tadashi Sugihara
  • Patent number: 5026680
    Abstract: A Ca carbonate powder, a Sr carbonate powder, and a Cu oxide powder are mixed in predetermined proportions, and sintered at a first predetermined temperature into a Ca-Sr-Cu--O oxide sintered body. A Bi oxide powder and a Pb oxide powder are mixed in predetermined proportions, and are sintered at a second predetermined temperature into a Bi--Pb--O oxide sintered body. The obtained Ca--Sr--Cu--O oxide sintered body and Bi--Pb--O oxide sintered body are crushed, and the resulting Ca--Sr--Cu--O oxide powder and Bi--Pb--O oxide powder are mixed in predetermined proportions. The resulting mixed powder is sintered at a third predetermined temperature into a Bi--Pb--Sr--Ca--Cu--O superconductive oxide sintered body, which is crushed into a powder of a Bi-based superconductive oxide containing Pb. A sintered body of the Bi-based superconductive oxide containing Pb is formed from the Bi-based superconductive oxide powder.
    Type: Grant
    Filed: August 7, 1989
    Date of Patent: June 25, 1991
    Assignee: Mitsubishi Metal Corporation
    Inventors: Tadashi Sugihara, Takuo Takeshita, Yukihiro Ohuchi
  • Patent number: 5019554
    Abstract: The structure of a wiring according to the present invention has a buffer layer interposed between an insulating layer and a wiring of a superconductive ceramic material, and the buffer layer hardly reacts on the superconductive ceramic material in a high temperature ambient, so that the superconductive ceramic material does not lose the superconductivity due to an influence of the buffer layer on the superconductive ceramic material during the formation stage of the wiring.
    Type: Grant
    Filed: August 18, 1989
    Date of Patent: May 28, 1991
    Assignee: Mitsubishi Metal Corp.
    Inventors: Takuo Takeshita, Tadashi Sugihara
  • Patent number: 4968665
    Abstract: A target for forming a superconductive oxide film consists of 5 to 40% by volume of metallic copper and 60 to 95% by volume of an oxygen compound of barium and copper, strontium, calcium and copper, or barium, calcium and copper dispersed in the metallic copper, and the target is improved in thermal conductivity, electric resistivity and mechanical strength, because the metallic copper is large in those properties.
    Type: Grant
    Filed: June 8, 1989
    Date of Patent: November 6, 1990
    Assignee: Mitsubishi Metal Corporation
    Inventors: Yukihiro Ohuchi, Tadashi Sugihara, Takuo Takeshita
  • Patent number: 4968664
    Abstract: A superconductive ceramic thin film-formed single-crystal wafer comprising a single-crystal wafer, an intermediate ceramic thin film formed on a surface of the single-crystal wafer, and a superconductive ceramic thin film formed on the intermediate ceramic thin film. The intermediate ceramic thin film comprises, as a main phase, a crystalline phase having a composition by atomic ratio of Bi.sub.2 Sr.sub.2 Ca.sub.x O.sub.y (provided that x: 1 to 2; and y: 6 to 7), and the superconductive ceramic thin film comprises, as a main phase, a crystalline phase having a composition by atomic ratio selected from the group consisting of Bi.sub.2 Sr.sub.2 Ca.sub.1 Cu.sub.2 O.sub.8 and Bi.sub.2 Sr.sub.2 Ca.sub.2 Cu.sub.3 O.sub.10. Alternatively, the intermediate ceramic thin film comprises, as a main phase, a crystalline phase having a composition by atomic ratio selected from the group consisting of Tl.sub.1 Ba.sub.2 Ca.sub.s O.sub.t (provided that s: 1 to 2; and t: 4.5 to 5.5) and Tl.sub.2 Ba.sub.2 Ca.sub.v O.sub.
    Type: Grant
    Filed: August 9, 1989
    Date of Patent: November 6, 1990
    Assignee: Mitsubishi Metal Corporation
    Inventors: Tadashi Sugihara, Takuo Takeshita
  • Patent number: 4929597
    Abstract: A superconductor according to the present invention contains an internal stress absorbing substance of a copper oxide and/or a barium oxide distributed over the superconductive oxide, so that the superconductor is free from cracks due to thermal stresses produced in a heat treatment.
    Type: Grant
    Filed: March 27, 1989
    Date of Patent: May 29, 1990
    Assignee: Mitsubishi Metal Corporation
    Inventors: Takuo Takeshita, Tadashi Sugihara, Shuichi Fujino
  • Patent number: 4619697
    Abstract: A novel target material for use in the sputter formation of a metal silicide film in electrode wiring in a semiconductor device, and a process for producing such target material are disclosed.The process for producing the target material is characterized by first impregnating molten silicon into a calcined body containing at least one silicide forming metal component and a silicon component and then forming a sintered body with a reduced oxygen content containing both a metal silicide and silicon.The target material prepared in accordance with the invention is extremely low not only in oxygen content but also in the concentrations of other impurities and has high deflective strength as compared with the conventional sintered target.The film formed by sputtering the target of the invention has appreciably reduced impurity levels and hence, very low electric resistivities. The target of the invention enables sputtering to be performed 5 times as fast as in the case using the conventional sintered target.
    Type: Grant
    Filed: August 27, 1985
    Date of Patent: October 28, 1986
    Assignee: Mitsubishi Kinzoku Kabushiki Kaisha
    Inventors: Kenichi Hijikata, Tadashi Sugihara, Masashi Komabayashi