Patents by Inventor Tadatoshi Kurozumi

Tadatoshi Kurozumi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160276675
    Abstract: Electrocatalyst layers include an electrocatalyst having high oxygen reduction activity that is useful as an alternative material to platinum catalysts. Uses of the electrocatalyst layers are also disclosed. The electrocatalyst layer includes an electrocatalyst that is formed of a metal oxide obtained by thermally decomposing a metal organic compound. The metal element forming the electrocatalyst is preferably one selected from the group consisting of niobium, titanium, tantalum and zirconium.
    Type: Application
    Filed: May 31, 2016
    Publication date: September 22, 2016
    Applicant: SHOWA DENKO K.K.
    Inventors: Tadatoshi KUROZUMI, Toshikazu SHISHIKURA, Ryuji MONDEN
  • Patent number: 9450250
    Abstract: Catalysts of the present invention are not corroded in acidic electrolytes or at high potential and have excellent durability and high oxygen reducing ability. The catalyst includes a metal oxycarbonitride containing two metals M selected from the group consisting of tin, indium, platinum, tantalum, zirconium, titanium, copper, iron, tungsten, chromium, molybdenum, hafnium, vanadium, cobalt, cerium, aluminum and nickel, and containing zirconium and/or titanium. Also disclosed is a process for producing the catalyst.
    Type: Grant
    Filed: June 29, 2015
    Date of Patent: September 20, 2016
    Assignee: SHOWA DENKO K.K.
    Inventors: Ryuji Monden, Tadatoshi Kurozumi, Toshikazu Shishikura, Yasuaki Wakizaka
  • Publication number: 20150372311
    Abstract: Catalysts of the present invention are not corroded in acidic electrolytes or at high potential and have excellent durability and high oxygen reducing ability. The catalyst includes a metal oxycarbonitride containing two metals M selected from the group consisting of tin, indium, platinum, tantalum, zirconium, titanium, copper, iron, tungsten, chromium, molybdenum, hafnium, vanadium, cobalt, cerium, aluminum and nickel, and containing zirconium and/or titanium. Also disclosed is a process for producing the catalyst.
    Type: Application
    Filed: June 29, 2015
    Publication date: December 24, 2015
    Applicant: SHOWA DENKO K.K.
    Inventors: Ryuji MONDEN, Tadatoshi KUROZUMI, Toshikazu SHISHIKURA, Yasuaki WAKIZAKA
  • Patent number: 9099749
    Abstract: Catalysts of the present invention are not corroded in acidic electrolytes or at high potential and have excellent durability and high oxygen reducing ability. The catalyst includes a metal oxycarbonitride containing two metals M selected from the group consisting of tin, indium, platinum, tantalum, zirconium, titanium, copper, iron, tungsten, chromium, molybdenum, hafnium, vanadium, cobalt, cerium, aluminum and nickel, and containing zirconium and/or titanium.
    Type: Grant
    Filed: March 23, 2009
    Date of Patent: August 4, 2015
    Assignee: SHOWA DENKO K.K.
    Inventors: Ryuji Monden, Tadatoshi Kurozumi, Toshikazu Shishikura, Yasuaki Wakizaka
  • Patent number: 8906581
    Abstract: The invention provides catalysts that are not corroded in acidic electrolytes or at high potential, have excellent durability and show high oxygen reducing ability. In a process of producing fuel cell electrodes containing a metal oxide and an electron conductive substance, the process includes steps in which a sugar is applied and carbonized on a support layer supporting the metal oxide and the electron conductive substance.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: December 9, 2014
    Assignee: Showa Denko K.K.
    Inventor: Tadatoshi Kurozumi
  • Patent number: 8889315
    Abstract: The present invention provides a catalyst which is not corroded in an acidic electrolyte or at a high potential, is excellent in durability and has high oxygen reduction ability. The catalyst of the present invention is characterized by including a niobium oxycarbonitride. The catalyst of the invention is also characterized by including a niobium oxycarbonitride represented by the composition formula NbCxNyOz, wherein x, y and z represent a ratio of the numbers of atoms and are numbers satisfying the conditions of 0.01?x?2, 0.01?y?2, 0.01?z?3 and x+y+z?5.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: November 18, 2014
    Assignee: Showa Denko K.K.
    Inventors: Ryuji Monden, Hiroshi Konuma, Toshikazu Shishikura, Tadatoshi Kurozumi
  • Patent number: 8785342
    Abstract: The present invention provides a catalyst carrier having excellent durability and capable of attaining high catalytic ability without increasing the specific surface area thereof, and a catalyst obtainable by using the catalyst carrier. The catalyst carrier of the present invention comprises a metal oxycarbonitride, preferably the metal contained in the metal oxycarbonitride comprises at least one selected from the group consisting of niobium, tin, indium, platinum, tantalum, zirconium, copper, iron, tungsten, chromium, molybdenum, hafnium, titanium, vanadium, cobalt, manganese, cerium, mercury, plutonium, gold, silver, iridium, palladium, yttrium, ruthenium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, and nickel. Moreover, the catalyst of the present invention comprises the catalyst carrier and a catalyst metal supported on the catalyst carrier.
    Type: Grant
    Filed: August 20, 2013
    Date of Patent: July 22, 2014
    Assignee: Showa Denko K.K.
    Inventors: Ryuji Monden, Tadatoshi Kurozumi, Toshikazu Shishikura
  • Patent number: 8642495
    Abstract: Catalysts of the invention are not corroded in acidic electrolytes or at high potential and have excellent durability and high oxygen reducing ability. A catalyst includes a metal oxycarbonitride containing niobium and at least one metal M selected from the group consisting of tin, indium, platinum, tantalum, zirconium, copper, iron, tungsten, chromium, molybdenum, hafnium, titanium, vanadium, cobalt, manganese, cerium, mercury, plutonium, gold, silver, iridium, palladium, yttrium, ruthenium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium and nickel. A process for making the catalyst involves a heat treatment.
    Type: Grant
    Filed: January 16, 2009
    Date of Patent: February 4, 2014
    Assignee: Showa Denko K.K.
    Inventors: Ryuji Monden, Tadatoshi Kurozumi, Toshikazu Shishikura, Takuya Imai
  • Publication number: 20130337367
    Abstract: The present invention provides a catalyst carrier having excellent durability and capable of attaining high catalytic ability without increasing the specific surface area thereof, and a catalyst obtainable by using the catalyst carrier. The catalyst carrier of the present invention comprises a metal oxycarbonitride, preferably the metal contained in the metal oxycarbonitride comprises at least one selected from the group consisting of niobium, tin, indium, platinum, tantalum, zirconium, copper, iron, tungsten, chromium, molybdenum, hafnium, titanium, vanadium, cobalt, manganese, cerium, mercury, plutonium, gold, silver, iridium, palladium, yttrium, ruthenium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, and nickel. Moreover, the catalyst of the present invention comprises the catalyst carrier and a catalyst metal supported on the catalyst carrier.
    Type: Application
    Filed: August 20, 2013
    Publication date: December 19, 2013
    Applicant: SHOWA DENKO K.K.
    Inventors: Ryuji MONDEN, Tadatoshi KUROZUMI, Toshikazu SHISHIKURA
  • Patent number: 8541334
    Abstract: The present invention provides a catalyst carrier having excellent durability and capable of attaining high catalytic ability without increasing the specific surface area thereof, and a catalyst obtainable by using the catalyst carrier. The catalyst carrier of the present invention comprises a metal oxycarbonitride, preferably the metal contained in the metal oxycarbonitride comprises at least one selected from the group consisting of niobium, tin, indium, platinum, tantalum, zirconium, copper, iron, tungsten, chromium, molybdenum, hafnium, titanium, vanadium, cobalt, manganese, cerium, mercury, plutonium, gold, silver, iridium, palladium, yttrium, ruthenium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, and nickel. Moreover, the catalyst of the present invention comprises the catalyst carrier and a catalyst metal supported on the catalyst carrier.
    Type: Grant
    Filed: February 10, 2009
    Date of Patent: September 24, 2013
    Assignee: Showa Denko K.K.
    Inventors: Ryuji Monden, Tadatoshi Kurozumi, Toshikazu Shishikura
  • Patent number: 8496903
    Abstract: Catalysts of the invention are not corroded in acidic electrolytes or at high potential and have excellent durability and high oxygen reducing ability. The catalysts include a niobium oxycarbonitride represented by a compositional formula NbCxNyOz (wherein x, y and z represent a ratio of the numbers of the atoms, 0.05?x<0.7, 0.01?y<0.7, 0.4?z<2.5, 1.0<x+y+z<2.56, and 4.0?4x+3y+2z).
    Type: Grant
    Filed: January 16, 2009
    Date of Patent: July 30, 2013
    Assignee: Show A Denko K.K.
    Inventors: Ryuji Monden, Tadatoshi Kurozumi, Toshikazu Shishikura
  • Publication number: 20120270135
    Abstract: Provided is a catalyst having high durability with resistance to corrosion in an acidic electrolyte or at high potential and high oxygen reduction activity. The catalyst is a metal oxycarbonitride containing at least one group III transition metal compound and at least one group IV or V transition metal oxide having a crystallite size of 1 to 100 nm. The group III transition metal compound may be a compound of at least one selected from the group consisting of scandium, yttrium, lanthanum, cerium, samarium, dysprosium, and holmium. The group IV or V transition metal oxide may be an oxide of at least one selected from the group consisting of titanium, zirconium, tantalum, and niobium.
    Type: Application
    Filed: April 21, 2011
    Publication date: October 25, 2012
    Applicant: SHOWA DENKO K.K.
    Inventor: Tadatoshi KUROZUMI
  • Patent number: 8268490
    Abstract: Catalyst layers include an electrocatalyst having high oxygen reduction activity that is useful as an alternative material to platinum catalysts. Uses of the catalyst layers are also disclosed. A catalyst layer of the invention includes an electrode substrate and an electrocatalyst on the surface of the electrode substrate, and the electrocatalyst is formed of a metal compound obtained by hydrolyzing a metal salt or a metal complex.
    Type: Grant
    Filed: July 23, 2008
    Date of Patent: September 18, 2012
    Assignee: Showa Denko K.K.
    Inventors: Tadatoshi Kurozumi, Toshikazu Shishikura
  • Patent number: 8182950
    Abstract: A metal oxide electrode catalyst which includes a metal oxide (Y) obtained by heat treating a metal compound (X) under an oxygen-containing atmosphere. The valence of the metal in the metal compound (X) is smaller than the valence of the metal in the metal oxide (Y). Further, the metal oxide electrocatalyst has an ionization potential in the range of 4.9 to 5.5 eV.
    Type: Grant
    Filed: July 23, 2008
    Date of Patent: May 22, 2012
    Assignee: Showa Denko K.K.
    Inventors: Tadatoshi Kurozumi, Toshikazu Shishikura, Hiroshi Konuma
  • Patent number: 8052954
    Abstract: A barium calcium titanate of the present invention has a remarkable effect that a fine barium calcium titanate powder having excellent dispersibility, reduced impurities and high crystallinity and being solid-dissolved at an arbitrary ratio, and a production process thereof are provided. The barium calcium titanate represented by the compositional formula: (Ba(1-X)CaX)YTiO3 (wherein 0<X<0.2 and 0.98?Y?1.02), which contains 3 mol % or less (including 0 mol %) of an orthorhombic perovskite compound and in which the specific surface area D is from 1 to 100 m2/g.
    Type: Grant
    Filed: August 26, 2005
    Date of Patent: November 8, 2011
    Assignee: Showa Denko K.K.
    Inventors: Tadatoshi Kurozumi, Akihiko Shirakawa
  • Publication number: 20110229793
    Abstract: A metal oxide electrode catalyst which includes a metal oxide (Y) obtained by heat treating a metal compound (X) under an oxygen-containing atmosphere. The valence of the metal in the metal compound (X) is smaller than the valence of the metal in the metal oxide (Y). Further, the metal oxide electrocatalyst has an ionization potential in the range of 4.9 to 5.5 eV.
    Type: Application
    Filed: July 23, 2008
    Publication date: September 22, 2011
    Applicant: SHOWA DENKO K.K.
    Inventors: Tadatoshi Kurozumi, Toshikazu Shishikura, Hiroshi Konuma
  • Publication number: 20110183236
    Abstract: The invention provides catalysts that are not corroded in acidic electrolytes or at high potential, have excellent durability and show high oxygen reducing ability. In a process of producing fuel cell electrodes containing a metal oxide and an electron conductive substance, the process includes steps in which a sugar is applied and carbonized on a support layer supporting the metal oxide and the electron conductive substance.
    Type: Application
    Filed: October 6, 2009
    Publication date: July 28, 2011
    Applicant: SHOWA DENKO K.K.
    Inventor: Tadatoshi Kurozumi
  • Publication number: 20110059386
    Abstract: Catalysts of the invention are not corroded in acidic electrolytes or at high potential and have excellent durability and high oxygen reducing ability. The catalysts include a niobium oxycarbonitride represented by a compositional formula NbCxNyOz (wherein x, y and z represent a ratio of the numbers of the atoms, 0.05?x<0.7, 0.01?y<0.7, 0.4?z<2.5, 1.0<x+y+z<2.56, and 4.0?4x+3y+2z).
    Type: Application
    Filed: January 16, 2009
    Publication date: March 10, 2011
    Applicant: SHOWA DENKO K.K.
    Inventors: Ryuji Monden, Tadatoshi Kurozumi, Toshikazu Shishikura
  • Publication number: 20110053040
    Abstract: Catalysts of the invention are not corroded in acidic electrolytes or at high potential and have excellent durability and high oxygen reducing ability. A catalyst includes a metal oxycarbonitride containing niobium and at least one metal M selected from the group consisting of tin, indium, platinum, tantalum, zirconium, copper, iron, tungsten, chromium, molybdenum, hafnium, titanium, vanadium, cobalt, manganese, cerium, mercury, plutonium, gold, silver, iridium, palladium, yttrium, ruthenium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium and nickel.
    Type: Application
    Filed: January 16, 2009
    Publication date: March 3, 2011
    Applicant: SHOWA DENKO K.K.
    Inventors: Ryuji Monden, Tadatoshi Kurozumi, Toshikzu Shishikura, Takuya Imai
  • Publication number: 20110020729
    Abstract: Catalysts of the present invention are not corroded in acidic electrolytes or at high potential and have excellent durability and high oxygen reducing ability. The catalyst includes a metal oxycarbonitride containing two metals M selected from the group consisting of tin, indium, platinum, tantalum, zirconium, titanium, copper, iron, tungsten, chromium, molybdenum, hafnium, vanadium, cobalt, cerium, aluminum and nickel, and containing zirconium and/or titanium.
    Type: Application
    Filed: March 23, 2009
    Publication date: January 27, 2011
    Applicant: SHOWDA DENKO K.K.
    Inventors: Ryuji Monden, Tadatoshi Kurozumi, Toshikazu Shishikura, Yasuaki Wakizaka