Patents by Inventor Tadayuki Hanamoto

Tadayuki Hanamoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7918934
    Abstract: A single crystal semiconductor manufacturing apparatus in which the concentration of oxygen in a single crystal semiconductor is controlled while pulling up a single crystal semiconductor such as single crystal silicon by the CZ method, a single crystal semiconductor manufacturing method, and a single crystal ingot manufactured by the method are disclosed. The natural convection (20) in the melt (5) in a quartz crucible (3) is controlled by regulating the temperatures at a plurality of parts of the melt (5). A single crystal semiconductor (6) can have a desired diameter by regulating the amount of heat produced by heating means (9a) on the upper side. Further the ratio between the amount of heat produced by the upper-side heating means (9a) and that by the lower-side heating means (9b) is adjusted to vary the process condition. In the adjustment, the amount of heat produced by the lower-side heating means (9b) is controlled to a relatively large proportion.
    Type: Grant
    Filed: November 29, 2006
    Date of Patent: April 5, 2011
    Assignee: Sumco Techxiv Corporation
    Inventors: Yutaka Shiraishi, Jyunsuke Tomioka, Takuji Okumura, Tadayuki Hanamoto, Takehiro Komatsu, Shigeo Morimoto
  • Patent number: 7727334
    Abstract: In a Czochralski (CZ) single crystal puller equipped with a cooler and a thermal insulation member, which are to be disposed in a CZ furnace, smooth recharge and additional charge of material are made possible. Further, elimination of dislocations from a silicon seed crystal by use of the Dash's neck method can be performed smoothly. To these ends, there is provided a CZ single crystal puller, wherein a cooler and a thermal insulation member are immediately moved upward away from a melt surface during recharge or additional charge of material or during elimination of dislocations from a silicon seed crystal by use of the Dash's neck method.
    Type: Grant
    Filed: May 31, 2007
    Date of Patent: June 1, 2010
    Assignee: Sumco Techxiv Corporation
    Inventors: Hiroshi Inagaki, Shigeki Kawashima, Makoto Kamogawa, Toshirou Kotooka, Toshiaki Saishoji, Daisuke Ebi, Kentaro Nakamura, Kengo Hayashi, Yoshinobu Hiraishi, Shigeo Morimoto, Hiroshi Monden, Tadayuki Hanamoto, Tadashi Hata
  • Publication number: 20090173272
    Abstract: In a Czochralski (CZ) single crystal puller equipped with a cooler and a thermal insulation member, which are to be disposed in a CZ furnace, smooth recharge and additional charge of material are made possible. Further, elimination of dislocations from a silicon seed crystal by use of the Dash's neck method can be performed smoothly. To these ends, there is provided a CZ single crystal puller, wherein a cooler and a thermal insulation member are immediately moved upward away from a melt surface during recharge or additional charge of material or during elimination of dislocations from a silicon seed crystal by use of the Dash's neck method.
    Type: Application
    Filed: December 23, 2008
    Publication date: July 9, 2009
    Applicant: KOMATSU DENSHI KINOZOKU KABUSHIKI KAISHA
    Inventors: Hiroshi Inagaki, Shigeki Kawashima, Makoto Kamogawa, Toshirou Kotooka, Toshiaki Saishoji, Daisuke Ebi, Kentaro Nakamura, Kengo Hayashi, Yoshinobu Hiraishi, Shigeo Morimoto, Hiroshi Monden, Tadayuki Hanamoto, Tadashi Hata
  • Publication number: 20080311019
    Abstract: In a Czochralski (CZ) single crystal puller equipped with a cooler and a thermal insulation member, which are to be disposed in a CZ furnace, smooth recharge and additional charge of material are made possible. Further, elimination of dislocations from a silicon seed crystal by use of the Dash's neck method can be performed smoothly. To these ends, there is provided a CZ single crystal puller, wherein a cooler and a thermal insulation member are immediately moved upward away from a melt surface during recharge or additional charge of material or during elimination of dislocations from a silicon seed crystal by use of the Dash's neck method.
    Type: Application
    Filed: October 31, 2007
    Publication date: December 18, 2008
    Applicant: Komatsu Denshi Kinzoku Kabushiki Kaisha
    Inventors: Hiroshi Inagaki, Shigeki Kawashima, Makoto Kamogawa, Toshirou Kotooka, Toshiaki Saishoji, Daisuke Ebi, Kentaro Nakamura, Kengo Hayashi, Yoshinobu Hiraishi, Shigeo Morimoto, Hiroshi Monden, Tadayuki Hanamoto, Tadashi Hata
  • Publication number: 20080311021
    Abstract: In a Czochralski (CZ) single crystal puller equipped with a cooler and a thermal insulation member, which are to be disposed in a CZ furnace, smooth recharge and additional charge of material are made possible. Further, elimination of dislocations from a silicon seed crystal by use of the Dash's neck method can be performed smoothly. To these ends, there is provided a CZ single crystal puller, wherein a cooler and a thermal insulation member are immediately moved upward away from a melt surface during recharge or additional charge of material or during elimination of dislocations from a silicon seed crystal by use of the Dash's neck method.
    Type: Application
    Filed: October 31, 2007
    Publication date: December 18, 2008
    Applicant: Komatsu Denshi Kinzoku Kabushiki Kaisha
    Inventors: Hiroshi Inagaki, Shigeki Kawashima, Makoto Kamogawa, Toshirou Kotooka, Toshiaki Saishoji, Daisuke Ebi, Kentaro Nakamura, Kengo Hayashi, Yoshinobu Hiraishi, Shigeo Morimoto, Hiroshi Monden, Tadayuki Hanamoto, Tadashi Hata
  • Publication number: 20070256625
    Abstract: In a Czochralski (CZ) single crystal puller equipped with a cooler and a thermal insulation member, which are to be disposed in a CZ furnace, smooth recharge and additional charge of material are made possible. Further, elimination of dislocations from a silicon seed crystal by use of the Dash's neck method can be performed smoothly. To these ends,there is provided a CZ single crystal puller, wherein a cooler and a thermal insulation member are immediately moved upward away from a melt surface during recharge or additional charge of material or during elimination of dislocations from a silicon seed crystal by use of the Dash's neck method.
    Type: Application
    Filed: May 31, 2007
    Publication date: November 8, 2007
    Applicant: Komatsu Denshi Kinzoku Kabushiki Kaisha
    Inventors: Hiroshi Inagaki, Shigeki Kawashima, Makoto Kamogawa, Toshirou Kotooka, Toshiaki Saishoji, Daisuke Ebi, Kentaro Nakamura, Kengo Hayashi, Yoshinobu Hiraishi, Shigeo Morimoto, Hiroshi Monden, Tadayuki Hanamoto, Tadashi Hata
  • Publication number: 20070068448
    Abstract: A single crystal semiconductor manufacturing apparatus in which the concentration of oxygen in a single crystal semiconductor is controlled while pulling up a single crystal semiconductor such as single crystal silicon by the CZ method, a single crystal semiconductor manufacturing method, and a single crystal ingot manufactured by the method are disclosed. The natural convection (20) in the melt (5) in a quartz crucible (3) is controlled by regulating the temperatures at a plurality of parts of the melt (5). A single crystal semiconductor (6) can have a desired diameter by regulating the amount of heat produced by heating means (9a) on the upper side. Further the ratio between the amount of heat produced by the upper-side heating means (9a) and that by the lower-side heating means (9b) is adjusted to vary the process condition. In the adjustment, the amount of heat produced by the lower-side heating means (9b) is controlled to a relatively large proportion.
    Type: Application
    Filed: November 29, 2006
    Publication date: March 29, 2007
    Applicant: Komatsu Denshi Kinzoku Kabushiki Kaisha
    Inventors: Yutaka Shiraishi, Jyunsuke Tomioka, Takuji Okumura, Tadayuki Hanamoto, Takehiro Komatsu, Shigeo Morimoto
  • Patent number: 7160386
    Abstract: A single crystal semiconductor manufacturing apparatus in which the concentration of oxygen in a single crystal semiconductor is controlled while pulling up a single crystal semiconductor such as single crystal silicon by the CZ method, a single crystal semiconductor manufacturing method, and a single crystal ingot manufactured by the method are disclosed. The natural convection (20) in the melt (5) in a quartz crucible (3) is controlled by regulating the temperatures at a plurality of parts of the melt (5). A single crystal semiconductor (6) can have a desired diameter by regulating the amount of heat produced by heating means (9a) on the upper side. Further the ratio between the amount of heat produced by the upper-side heating means (9a) and that by the lower-side heating means (9b) is adjusted to vary the process condition. In the adjustment, the amount of heat produced by the lower-side heating means (9b) is controlled to a relatively large proportion.
    Type: Grant
    Filed: September 27, 2002
    Date of Patent: January 9, 2007
    Assignee: Komatsu Denshi Kinzoku Kabushiki Kaisha
    Inventors: Yutaka Shiraishi, Jyunsuke Tomioka, Takuji Okumura, Tadayuki Hanamoto, Takehiro Komatsu, Shigeo Morimoto
  • Patent number: 6994748
    Abstract: A melt level or the gap between a melt surface and a heat shield is measured accurately irrespective of how the melt surface is. A laser beam from a range-finding unit is reflected by a scanning mirror and projected on a melt surface through an entrance window and a quartz prism in a chamber of a puller. After specular reflection, the beam forms a measurement spot in the bottom of a heat shield and scatters. Part of the scatter, after specular reflection at the melt surface (secondary reflection), passes through the prism, the entrance window and the scanning mirror to the range-finding unit. The range-finding unit carries out triangulation using the distance between a laser source and a photodetector therein, and the angle of incidence and the angle of the received laser beam.
    Type: Grant
    Filed: May 1, 2001
    Date of Patent: February 7, 2006
    Assignee: Komatsu Denshi Kinzoku Kabushiki Kaisha
    Inventors: Masato Moriya, Tadayuki Hanamoto, Hiroshi Monden, Toshio Hayashida, Toshirou Kotooka
  • Patent number: 6977010
    Abstract: In a Czochralski (CZ) single crystal puller equipped with a cooler and a thermal insulation member, which are to be disposed in a CZ furnace, smooth recharge and additional charge of material are made possible. Further, elimination of dislocations from a silicon seed crystal by use of the Dash's neck method can be performed smoothly. To these ends, there is provided a CZ single crystal puller, wherein a cooler and a thermal insulation member are immediately moved upward away from a melt surface during recharge or additional charge of material or during elimination of dislocations from a silicon seed crystal by use of the Dash's neck method.
    Type: Grant
    Filed: January 7, 2003
    Date of Patent: December 20, 2005
    Assignee: Komatsu Denshi Kinzoku Kabushiki Kaisha
    Inventors: Hiroshi Inagaki, Shigeki Kawashima, Makoto Kamogawa, Toshirou Kotooka, Toshiaki Saishoji, Daisuke Ebi, Kentaro Nakamura, Kengo Hayashi, Yoshinobu Hiraishi, Shigeo Morimoto, Hiroshi Monden, Tadayuki Hanamoto, Tadashi Hata
  • Publication number: 20050268840
    Abstract: In a Czochralski (CZ) single crystal puller equipped with a cooler and a thermal insulation member, which are to be disposed in a CZ furnace, smooth recharge and additional charge of material are made possible. Further, elimination of dislocations from a silicon seed crystal by use of the Dash's neck method can be performed smoothly. To these ends, there is provided a CZ single crystal puller, wherein a cooler and a thermal insulation member are immediately moved upward away from a melt surface during recharge or additional charge of material or during elimination of dislocations from a silicon seed crystal by use of the Dash's neck method.
    Type: Application
    Filed: June 7, 2005
    Publication date: December 8, 2005
    Applicant: Komatsu Denshi Kinzoku Kabushiki Kaisha
    Inventors: Hiroshi Inagaki, Shigeki Kawashima, Makoto Kamogawa, Toshirou Kotooka, Toshiaki Saishoji, Daisuke Ebi, Kentaro Nakamura, Kengo Hayashi, Yoshinobu Hiraishi, Shigeo Morimoto, Hiroshi Monden, Tadayuki Hanamoto, Tadashi Hata
  • Publication number: 20040211359
    Abstract: A single crystal semiconductor manufacturing apparatus in which the concentration of oxygen in a single crystal semiconductor is controlled while pulling up a single crystal semiconductor such as single crystal silicon by the CZ method, a single crystal semiconductor manufacturing method, and a single crystal ingot manufactured by the method are disclosed. The natural convection (20) in the melt (5) in a quartz crucible (3) is controlled by regulating the temperatures at a plurality of parts of the melt (5). A single crystal semiconductor (6) can have a desired diameter by regulating the amount of heat produced by heating means (9a) on the upper side. Further the ratio between the amount of heat produced by the upper-side heating means (9a) and that by the lower-side heating means (9b) is adjusted to vary the process condition. In the adjustment, the amount of heat produced by the lower-side heating means (9b) is controlled to a relatively large proportion.
    Type: Application
    Filed: February 20, 2004
    Publication date: October 28, 2004
    Inventors: Yutaka Shiraishi, Jyunsuke Tomioka, Takuji Okumura, Tadayuki Hanamoto, Takehiro Komatsu, Shigeo Morimoto
  • Publication number: 20030154907
    Abstract: In a Czochralski (CZ) single crystal puller equipped with a cooler and a thermal insulation member, which are to be disposed in a CZ furnace, smooth recharge and additional charge of material are made possible. Further, elimination of dislocations from a silicon seed crystal by use of the Dash's neck method can be performed smoothly. To these ends, there is provided a CZ single crystal puller, wherein a cooler and a thermal insulation member are immediately moved upward away from a melt surface during recharge or additional charge of material or during elimination of dislocations from a silicon seed crystal by use of the Dash's neck method.
    Type: Application
    Filed: January 7, 2003
    Publication date: August 21, 2003
    Applicant: Komatsu Denshi Kinzoku Kabushiki Kaisha
    Inventors: Hiroshi Inagaki, Shigeki Kawashima, Makoto Kamogawa, Toshirou Kotooka, Toshiaki Saishoji, Daisuke Ebi, Kentaro Nakamura, Kengo Hayashi, Yoshinobu Hiraishi, Shigeo Morimoto, Hiroshi Monden, Tadayuki Hanamoto, Tadashi Hata
  • Patent number: 6572699
    Abstract: A melt level detector is provided for detecting the melt level of a CZ furnace by triangulation. The laser beam (2) from a laser source (1) is moved in radial directions of a crucible (14) in the CZ furnace to find a location where a photodetector system (5, 7) can receive the reflection (4) from the melt level (3), and the laser beam (2) is fixed at the location. Since the measurements thus take place within an extremely small angular range of the laser beam, the melt level (3) can be detected with little effect of noise on the melt level (3) while eliminating complexity of the device.
    Type: Grant
    Filed: September 14, 2001
    Date of Patent: June 3, 2003
    Assignee: Komatsu Denshi Kinzoku Kabushiki Kaisha
    Inventors: Masato Moriya, Tadayuki Hanamoto, Kazuhiro Mimura, Toshirou Kotooka
  • Publication number: 20020144641
    Abstract: In a Czochralski (CZ) single crystal puller equipped with a cooler and a thermal insulation member, which are to be disposed in a CZ furnace, smooth recharge and additional charge of material are made possible. Further, elimination of dislocations from a silicon seed crystal by use of the Dash's neck method can be performed smoothly. To these ends, there is provided a CZ single crystal puller, wherein a cooler and a thermal insulation member are immediately moved upward away from a melt surface during recharge or additional charge of material or during elimination of dislocations from a silicon seed crystal by use of the Dash's neck method.
    Type: Application
    Filed: February 1, 2001
    Publication date: October 10, 2002
    Inventors: Hiroshi Inagaki, Shigeki Kawashima, Makoto Kamogawa, Toshire Kotooka, Toshiaki Saishoji, Daisuke Ebi, Kentarou Nakamura, Kengo Hayashi, Yoshinobu Hiraishi, Shigeo Morimoto, Hiroshi Monden, Tadayuki Hanamoto, Tadashi Hata
  • Patent number: 6458203
    Abstract: There are provided a CZ system for manufacturing a single-crystal ingot, which produces a perfect crystal with good reproducibility through growth of a single-crystal ingot, as well as a method of manufacturing the single-crystal ingot. A system of manufacturing a single-crystal ingot by pulling a single-crystal ingot from molten raw material by means of a Czochralski technique, the system including measurement means for measuring the distance between the level of molten raw material and the bottom of a heat-shielding member. On the basis of the thus-measured distance, the temperature gradient of area G1 of the single-crystal pulled silicon ingot is controlled so as to produce a perfect crystal with good reproducibility, by means of controlling any factor for pulling a single-crystal silicon ingot selected from the group comprising the amount of heat applied to silicon melt, the level of silicon melt, and the pull rate of a single-crystal silicon ingot.
    Type: Grant
    Filed: April 27, 2000
    Date of Patent: October 1, 2002
    Inventors: Tadayuki Hanamoto, Shigeo Morimoto, Masato Moriya, Toshirou Kotooka
  • Patent number: 6347521
    Abstract: The invention provides a temperature control device with excellent temperature uniformity and thermal response, which can be manufactured easily, and a manufacturing method for the same. A thermoelectric device 21 is arranged between a substrate mounting plate 1 and a cooling plate 3. Copper foil electrodes 5, 5, . . . on the upper side of the thermoelectric device 21 are adhered to a lower surface of the substrate mounting plate 1 with an adhesive sheet 17 covering substantially the entire lower surface of the substrate mounting plate 1, and copper foil electrodes 7, 7, . . . on the lower side of the thermoelectric device 21 are adhered to an upper surface of the cooling plate 3 with an adhesive sheet 19 covering substantially the entire upper surface of the substrate mounting plate 1.
    Type: Grant
    Filed: October 11, 2000
    Date of Patent: February 19, 2002
    Assignee: Komatsu LTD
    Inventors: Kanichi Kadotani, Makio Tsubota, Hironori Akiba, Tadayuki Hanamoto
  • Patent number: 5478170
    Abstract: An object of this invention is to improve precision in the operation, operating efficiency, and reliability of an excavator. A soil condition at a place where an excavator (1) is advanced is inputted, and a reference number of revolutions of a cutter (9) and a reference advancing speed of the excavator (1) are set in correspondence with the inputted soil condition. Meanwhile, a load on each actuator (17, 18) is detected. The actuator (18) for rotating the cutter is controlled so as to allow the set reference number of revolutions to be obtained for the cutter (9). In a case where the load on each of the actuators (17, 18) is within a predetermined range, the actuator (17) for advancing is controlled so as to allow the set reference advancing speed to be obtained for the excavator (1).
    Type: Grant
    Filed: February 10, 1994
    Date of Patent: December 26, 1995
    Assignee: Kabushiki Kaisha Komatsu Seisakusho
    Inventors: Tadayuki Hanamoto, Yutaka Kato, Norio Takahashi
  • Patent number: 5356259
    Abstract: A technique relating to automatic excavation by a power shovel is shown. An ideal reference locus of movement of a front edge of a bucket is approximated by a plurality of points, positions of the plurality of points and postures of the bucket at these points are previously set. If the start of automatic excavation is assigned by an operation pedal or the like, the position of the front edge of the bucket at the assigned moment is made a position to start excavation.
    Type: Grant
    Filed: October 2, 1992
    Date of Patent: October 18, 1994
    Assignee: Kabushiki Kaisha Komatsu Seisakusho
    Inventors: Tadayuki Hanamoto, Shinji Takasugi
  • Patent number: 5312163
    Abstract: A system for supporting the drive of an excavating type underground advancing machine is provided to lighten the operator's burden so that an unskilled operator can perform operation comparable to that of the skilled operator. In this system for supporting the drive, output signals from a group of first sensors (12a) for measuring magnitude of operation of a rocking actuator (10) for orientation control and an output signal from a second sensor (12b) for measuring cutter torque pressure are input into an automatic measurement portion (14). These signals are adjusted in an automatic adjustment portion (15) and input to a fuzzy control portion. The rocking magnitude of an excavating cutter is calculated in a rocking magnitude control aiding system portion (16a) in response to the adjusted signal from the group of the first sensors.
    Type: Grant
    Filed: January 13, 1993
    Date of Patent: May 17, 1994
    Assignee: Kabushiki Kaisha Komatsu Seisakusho
    Inventors: Tadayuki Hanamoto, Norio Takahashi