Patents by Inventor Tae-Gon Cha

Tae-Gon Cha has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11976270
    Abstract: Provided herein, in some aspects, are methods and compositions for producing single-stranded DNA (ssDNA) having uniform length.
    Type: Grant
    Filed: May 14, 2020
    Date of Patent: May 7, 2024
    Assignee: Massachusetts Institute of Technology
    Inventors: Angela Belcher, Christopher A. Voigt, Uyanga Tsedev, Tae-Gon Cha
  • Publication number: 20200362332
    Abstract: Provided herein, in some aspects, are methods and compositions for producing single-stranded DNA (ssDNA) having uniform length.
    Type: Application
    Filed: May 14, 2020
    Publication date: November 19, 2020
    Applicant: Massachusetts Institute of Technology
    Inventors: Angela Belcher, Christopher A. Voigt, Uyanga Tsedev, Tae-Gon Cha
  • Patent number: 8882977
    Abstract: Glucose and ATP biosensors have important applications in diagnostics and research. Combining single-walled carbon nanotubes (SWCNTs) with Pt nanoparticles can significantly enhance the performance of electrochemical biosensors. This disclosure illustrates the use of single-stranded DNA (ssDNA) to modify SWCNTs to increase SWCNT solubility in water. Multiple embodiments with this configuration allows for exploration of new schemes of combining ssDNASWCNT and Pt black in aqueous media systems. These embodiments resulted in a nanocomposite with enhanced biosensor performance. The ssDNA-SWCNT/Pt black nanocomposite constructed by a layered scheme proved most effective in terms of biosensor activity. The key feature of this structure and method of use is the exploitation of ssDNASWCNTs as molecular templates for Pt black electrodeposition. Glucose and ATP microbiosensors fabricated utilizing this structure and method of use exhibited high sensitivity, wide linear range and low limit of detection.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: November 11, 2014
    Assignee: Purdue Research Foundation
    Inventors: D. Marshall Porterfield, Tae-Gon Cha, Jong Hyun Choi, Jonathan C. Claussen, Alfred R. Diggs, Jin Shi
  • Publication number: 20130105328
    Abstract: Glucose and ATP biosensors have important applications in diagnostics and research. Combining single-walled carbon nanotubes (SWCNTs) with Pt nanoparticles can significantly enhance the performance of electrochemical biosensors. This disclosure illustrates the use of single-stranded DNA (ssDNA) to modify SWCNTs to increase SWCNT solubility in water. Multiple embodiments with this configuration allows for exploration of new schemes of combining ssDNASWCNT and Pt black in aqueous media systems. These embodiments resulted in a nanocomposite with enhanced biosensor performance. The ssDNA-SWCNT/Pt black nanocomposite constructed by a layered scheme proved most effective in terms of biosensor activity. The key feature of this structure and method of use is the exploitation of ssDNASWCNTs as molecular templates for Pt black electrodeposition. Glucose and ATP microbiosensors fabricated utilizing this structure and method of use exhibited high sensitivity, wide linear range and low limit of detection.
    Type: Application
    Filed: September 14, 2012
    Publication date: May 2, 2013
    Applicant: Purdue Research Foundation
    Inventors: Tae-Gon Cha, Jong Hyun Choi, Jonathan C. Claussen, Alfred R. Diggs, Jin Shi
  • Publication number: 20100098941
    Abstract: A polymer microstructure with a tilted micropillar array and a method of fabricating the same. The tilted micropillar array is formed by adjusting the incident angle of the ion beam for the ion beam treatment using a PECVD method with low energy consumption. The tilt angle of the micropillars is adjusted to a desired angle by adjusting at least one of the incident angle, the irradiation time, and the magnitude of acceleration voltage of the ion beam for the ion beam treatment.
    Type: Application
    Filed: October 16, 2009
    Publication date: April 22, 2010
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Myoung-Woon Moon, Kwang Ryeol Lee, Ho-Young Kim, Tae-Gon Cha