Patents by Inventor Tae-Ouk Kwon

Tae-Ouk Kwon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9184172
    Abstract: A non-volatile memory device includes a field region that defines an active region in a semiconductor substrate, a floating gate pattern on the active region, a dielectric layer on the floating gate pattern and a control gate on the dielectric layer. The control gate includes a first conductive pattern that has a first composition that crystallizes in a first temperature range, and a second conductive pattern that has a second composition that is different from the first composition and that crystallizes in a second temperature range that is lower than the first temperature range, the first conductive pattern being between the dielectric layer and the second conductive pattern.
    Type: Grant
    Filed: December 12, 2014
    Date of Patent: November 10, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-Geun Jee, Seok-Hoon Kim, Su-Jin Shin, Woo-Sung Lee, Tae-Ouk Kwon
  • Patent number: 9153692
    Abstract: Provided is a semiconductor device. The semiconductor device includes a fin on a substrate; a gate electrode cross the fin on the substrate; a source/drain formed on at least one of both sides of the gate electrode, and including a first film and a second film; and a stress film arranged between an isolation film on the substrate and the source/drain, and formed on a side surface of the fin.
    Type: Grant
    Filed: March 3, 2014
    Date of Patent: October 6, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seok-Hoon Kim, Tae-Ouk Kwon, Su-Jin Jung, Young-Pil Kim, Byeong-Chan Lee, Bon-Young Koo
  • Publication number: 20150099353
    Abstract: A non-volatile memory device includes a field region that defines an active region in a semiconductor substrate, a floating gate pattern on the active region, a dielectric layer on the floating gate pattern and a control gate on the dielectric layer. The control gate includes a first conductive pattern that has a first composition that crystallizes in a first temperature range, and a second conductive pattern that has a second composition that is different from the first composition and that crystallizes in a second temperature range that is lower than the first temperature range, the first conductive pattern being between the dielectric layer and the second conductive pattern.
    Type: Application
    Filed: December 12, 2014
    Publication date: April 9, 2015
    Inventors: Jung-Geun JEE, Seok-Hoon KIM, Su-Jin SHIN, Woo-Sung LEE, Tae-Ouk KWON
  • Publication number: 20140299934
    Abstract: Provided is a semiconductor device. The semiconductor device includes a fin on a substrate; a gate electrode cross the fin on the substrate; a source/drain formed on at least one of both sides of the gate electrode, and including a first film and a second film; and a stress film arranged between an isolation film on the substrate and the source/drain, and formed on a side surface of the fin.
    Type: Application
    Filed: March 3, 2014
    Publication date: October 9, 2014
    Inventors: Seok-Hoon KIM, Tae-Ouk KWON, Su-Jin JUNG, Young-Pil KIM, Byeong-Chan LEE, Bon-Young KOO
  • Publication number: 20140080298
    Abstract: A non-volatile memory device includes a field region that defines an active region in a semiconductor substrate, a floating gate pattern on the active region, a dielectric layer on the floating gate pattern and a control gate on the dielectric layer. The control gate includes a first conductive pattern that has a first composition that crystallizes in a first temperature range, and a second conductive pattern that has a second composition that is different from the first composition and that crystallizes in a second temperature range that is lower than the first temperature range, the first conductive pattern being between the dielectric layer and the second conductive pattern.
    Type: Application
    Filed: November 15, 2013
    Publication date: March 20, 2014
    Inventors: Jung-Geun JEE, Seok-Hoon KIM, Su-Jin SHIN, Woo-Sung LEE, Tae-Ouk KWON
  • Patent number: 8633078
    Abstract: A semiconductor device is formed with a gate pattern formed on a substrate, and a recrystallized region having a stacking fault defect in the substrate at one side of the gate pattern. The semiconductor device can have a reduced leakage current and improved channel conductivity.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: January 21, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kwan-Yong Lim, Chung-Geun Koh, Sang-Bom Kang, Ui-Hui Kwon, Hyun-Jung Lee, Tae-Ouk Kwon, Seok-Hoon Kim
  • Patent number: 8610195
    Abstract: A non-volatile memory device includes a field region that defines an active region in a semiconductor substrate, a floating gate pattern on the active region, a dielectric layer on the floating gate pattern and a control gate on the dielectric layer. The control gate includes a first conductive pattern that has a first composition that crystallizes in a first temperature range, and a second conductive pattern that has a second composition that is different from the first composition and that crystallizes in a second temperature range that is lower than the first temperature range, the first conductive pattern being between the dielectric layer and the second conductive pattern.
    Type: Grant
    Filed: April 22, 2011
    Date of Patent: December 17, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-Geun Jee, Seok-Hoon Kim, Su-Jin Shin, Woo-Sung Lee, Tae-Ouk Kwon
  • Publication number: 20120108023
    Abstract: A semiconductor device is formed with a gate pattern formed on a substrate, and a recrystallized region having a stacking fault defect in the substrate at one side of the gate pattern. The semiconductor device can have a reduced leakage current and improved channel conductivity.
    Type: Application
    Filed: September 22, 2011
    Publication date: May 3, 2012
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Kwan-Yong Lim, Chung-Geun Koh, Sang-Bom Kang, Ui-Hui Kwon, Hyun-Jung Lee, Tae-Ouk Kwon, Seok-Hoon Kim
  • Publication number: 20120034749
    Abstract: A method of manufacturing a semiconductor device can be provided by forming a gate structure on a substrate and forming a diffusion barrier layer on the gate structure and the substrate, A stress layer can be formed on the diffusion barrier layer comprising a metal nitride or a metal oxide having a concentration of nitrogen or oxygen associated therewith. The stress layer can be heated to transform the stress layer into a tensile stress layer to reduce the concentration of the nitrogen or the oxygen in the stress layer. The tensile stress layer and the diffusion barrier layer can be removed.
    Type: Application
    Filed: August 3, 2011
    Publication date: February 9, 2012
    Inventors: Kwan-Yong LIM, Chung-Geun Koh, Hyun-Jung Lee, Tae-Ouk Kwon, Seok-Hoon Kim, Tae-Ho Cha
  • Patent number: 8101480
    Abstract: A method of forming a transistor induces stress in the channel region using a stress memorization technique (SMT). Impurities are implanted into a substrate adjacent a gate electrode structure to produce an amorphous region adjacent the channel region. The amorphous region is then recrystallized by forming a metal-oxide layer over the amorphous region, and then thermally treating the same. The crystallization creates compressive stress in the amorphous region. As a result, stress is induced in the channel region of the substrate located under the gate electrode structure.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: January 24, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seok-Hoon Kim, Chung-Geun Koh, Kwan-Yong Lim, Hyun-Jung Lee, Tae-Ouk Kwon, Sang-Bom Kang
  • Publication number: 20110291175
    Abstract: A non-volatile memory device includes a field region that defines an active region in a semiconductor substrate, a floating gate pattern on the active region, a dielectric layer on the floating gate pattern and a control gate on the dielectric layer. The control gate includes a first conductive pattern that has a first composition that crystallizes in a first temperature range, and a second conductive pattern that has a second composition that is different from the first composition and that crystallizes in a second temperature range that is lower than the first temperature range, the first conductive pattern being between the dielectric layer and the second conductive pattern.
    Type: Application
    Filed: April 22, 2011
    Publication date: December 1, 2011
    Inventors: Jung-Geun Jee, Seok-Hoon Kim, Su-Jin Shin, Woo-Sung Lee, Tae-Ouk Kwon