Patents by Inventor Tae-soo Kang

Tae-soo Kang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7964907
    Abstract: Methods of forming a gate structure for an integrated circuit memory device include forming a first dielectric layer having a dielectric constant of under 7 on an integrated circuit substrate. Ions of a selected element from group 4 of the periodic table and having a thermal diffusivity of less than about 0.5 centimeters per second (cm2/s) are injected into the first dielectric layer to form a charge storing region in the first dielectric layer with a tunnel dielectric layer under the charge storing region. A metal oxide second dielectric layer is formed on the first dielectric layer, the second dielectric layer. The substrate including the first and second dielectric layers is thermally treated to form a plurality of discrete charge storing nano crystals in the charge storing region and a gate electrode layer is formed on the second dielectric layer. Gate structures for integrated circuit devices and memory cells are also provided.
    Type: Grant
    Filed: May 19, 2009
    Date of Patent: June 21, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sam-jong Choi, Yong-kwon Kim, Kyoo-chul Cho, Kyung-soo Kim, Jae-ryong Jung, Tae-soo Kang, Sang-Sig Kim
  • Patent number: 7675091
    Abstract: Disclosed is a semiconductor wafer and method of fabricating the same. The semiconductor wafer is comprised of a semiconductor layer formed on an insulation layer on a base substrate. The semiconductor layer includes a surface region organized in a first crystallographic orientation, and another surface region organized in a second crystallographic orientation. The performance of a semiconductor device with unit elements that use charges, which are activated in high mobility to the crystallographic orientation, as carriers is enhanced. The semiconductor wafer is completed by forming the semiconductor layer with the second crystallographic orientation on the plane of the first crystallographic orientation, growing an epitaxial layer, forming the insulation layer on the epitaxial layer, and then bonding the insulation layer to the base substrate.
    Type: Grant
    Filed: August 8, 2006
    Date of Patent: March 9, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young-Soo Park, Kyoo-Chul Cho, Shin-Hyeok Han, Tae-Soo Kang
  • Publication number: 20090236655
    Abstract: Methods of forming a gate structure for an integrated circuit memory device include forming a first dielectric layer having a dielectric constant of under 7 on an integrated circuit substrate. Ions of a selected element from group 4 of the periodic table and having a thermal diffusivity of less than about 0.5 centimeters per second (cm2/s) are injected into the first dielectric layer to form a charge storing region in the first dielectric layer with a tunnel dielectric layer under the charge storing region. A metal oxide second dielectric layer is formed on the first dielectric layer, the second dielectric layer. The substrate including the first and second dielectric layers is thermally treated to form a plurality of discrete charge storing nano crystals in the charge storing region and a gate electrode layer is formed on the second dielectric layer. Gate structures for integrated circuit devices and memory cells are also provided.
    Type: Application
    Filed: May 19, 2009
    Publication date: September 24, 2009
    Inventors: Sam-jong Choi, Yong-kwon Kim, Kyoo-chul Cho, Kyung-soo Kim, Jae-ryong Jung, Tae-soo Kang, Sang-Sig Kim
  • Patent number: 7573123
    Abstract: Provided are a semiconductor device, and a method of forming the same. In one embodiment, the semiconductor device includes a semiconductor layer, first and second semiconductor fins, an insulating layer, and an inter-fin connection member. The first and second semiconductor fins are placed on the semiconductor layer, and have different crystal directions. The first semiconductor fin is connected to the semiconductor layer, and has the equivalent crystal direction as that of the semiconductor layer. The insulating layer is interposed between the second semiconductor fin and the semiconductor layer, and has an opening in which the first semiconductor fin is inserted. The inter-fin connection member connects the first semiconductor fin and the second semiconductor fin together on the insulating layer.
    Type: Grant
    Filed: July 9, 2007
    Date of Patent: August 11, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young-Soo Park, Kyoo-Chul Cho, Hee-Sung Kim, Tae-Soo Kang, Sam-Jong Choi
  • Patent number: 7550347
    Abstract: Methods of forming a gate structure for an integrated circuit memory device include forming a first dielectric layer having a dielectric constant of under 7 on an integrated circuit substrate. Ions of a selected element from group 4 of the periodic table and having a thermal diffusivity of less than about 0.5 centimeters per second (cm2/s) are injected into the first dielectric layer to form a charge storing region in the first dielectric layer with a tunnel dielectric layer under the charge storing region. A metal oxide second dielectric layer is formed on the first dielectric layer, the second dielectric layer. The substrate including the first and second dielectric layers is thermally treated to form a plurality of discrete charge storing nano crystals in the charge storing region and a gate electrode layer is formed on the second dielectric layer. Gate structures for integrated circuit devices and memory cells are also provided.
    Type: Grant
    Filed: August 25, 2006
    Date of Patent: June 23, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sam-jong Choi, Yong-kwon Kim, Kyoo-chul Cho, Kyung-soo Kim, Jae-ryong Jung, Tae-soo Kang, Sang-Sig Kim
  • Publication number: 20090096014
    Abstract: A nonvolatile memory device includes a semiconductor substrate, a charge-trap structure disposed on the semiconductor substrate, which includes an insulating film and a plurality of carbon nanocrystals embedded in the insulating film, and a gate disposed on the charge-trap structure. The nonvolatile memory device may exhibit memory hysteresis characteristics with improved reliability.
    Type: Application
    Filed: June 11, 2008
    Publication date: April 16, 2009
    Inventors: Sam-Jong Choi, Kyoo-Chul Cho, Jung-Sik Choi, Hee-sung Kim, Tae-Soo Kang, Yoon-Hee Lee
  • Publication number: 20080246077
    Abstract: In a method for fabricating a semiconductor memory device and a semiconductor memory device fabricated by the method, the method includes forming a multi-layered dielectric structure including a first dielectric layer with an ion implantation layer and a second dielectric layer without an ion implantation layer, over a semiconductor substrate; forming nanocrystals in the first and second dielectric layers by diffusing ions of the ion implantation layer by thermally treating the multi-layered dielectric structure; and forming a gate electrode on the multi-layered dielectric structure.
    Type: Application
    Filed: February 4, 2008
    Publication date: October 9, 2008
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Young-Soo Park, Sam-Jong Choi, Kyoo-Chul Cho, Tae-Soo Kang
  • Publication number: 20080014722
    Abstract: Provided are a semiconductor device, and a method of forming the same. In one embodiment, the semiconductor device includes a semiconductor layer, first and second semiconductor fins, an insulating layer, and an inter-fin connection member. The first and second semiconductor fins are placed on the semiconductor layer, and have different crystal directions. The first semiconductor fin is connected to the semiconductor layer, and has the equivalent crystal direction as that of the semiconductor layer. The insulating layer is interposed between the second semiconductor fin and the semiconductor layer, and has an opening in which the first semiconductor fin is inserted. The inter-fin connection member connects the first semiconductor fin and the second semiconductor fin together on the insulating layer.
    Type: Application
    Filed: July 9, 2007
    Publication date: January 17, 2008
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Young-Soo PARK, Kyoo-Chul CHO, Hee-Sung KIM, Tae-Soo KANG, Sam-Jong CHOI
  • Publication number: 20070246775
    Abstract: Provided are an SOI substrate, memory devices using the SOI substrate, and a method of manufacturing the same. The SOI substrate includes a thermal oxide layer pattern which minimizes leakage current but allows back biasing and heat dissipation through the substrate. The SOI substrate also includes a metal-gettering site to further minimize leakage current.
    Type: Application
    Filed: April 24, 2007
    Publication date: October 25, 2007
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Young-Soo PARK, Kyoo-Chul CHO, Soo-Yeol CHOI, Tae-Soo KANG, Yoon-Hee LEE
  • Publication number: 20070128846
    Abstract: Methods of forming a gate structure for an integrated circuit memory device include forming a first dielectric layer having a dielectric constant of under 7 on an integrated circuit substrate. Ions of a selected element from group 4 of the periodic table and having a thermal diffusivity of less than about 0.5 centimeters per second (cm2/s) are injected into the first dielectric layer to form a charge storing region in the first dielectric layer with a tunnel dielectric layer under the charge storing region. A metal oxide second dielectric layer is formed on the first dielectric layer, the second dielectric layer. The substrate including the first and second dielectric layers is thermally treated to form a plurality of discrete charge storing nano crystals in the charge storing region and a gate electrode layer is formed on the second dielectric layer. Gate structures for integrated circuit devices and memory cells are also provided.
    Type: Application
    Filed: August 25, 2006
    Publication date: June 7, 2007
    Inventors: Sam-jong Choi, Yong-kwon Kim, Kyoo-chul Cho, Kyung-soo Kim, Jae-ryong Jung, Tae-soo Kang, Sang-Sig Kim
  • Publication number: 20070034950
    Abstract: Disclosed is a semiconductor wafer and method of fabricating the same. The semiconductor wafer is comprised of a semiconductor layer formed on an insulation layer on a base substrate. The semiconductor layer includes a surface region organized in a first crystallographic orientation, and another surface region organized in a second crystallographic orientation. The performance of a semiconductor device with unit elements that use charges, which are activated in high mobility to the crystallographic orientation, as carriers is enhanced. The semiconductor wafer is completed by forming the semiconductor layer with the second crystallographic orientation on the plane of the first crystallographic orientation, growing an epitaxial layer, forming the insulation layer on the epitaxial layer, and then bonding the insulation layer to the base substrate.
    Type: Application
    Filed: August 8, 2006
    Publication date: February 15, 2007
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Young-Soo PARK, Kyoo-Chul CHO, Shin-Hyeok HAN, Tae-Soo KANG
  • Publication number: 20050259246
    Abstract: An apparatus and method for detecting a surface status. The method includes generating first and second pulse sequences and irradiating the first and second pulse sequences into a given surface. Light from the first and second pulses may be scattered by the given surface and analyzed to determine the status of the given surface. The apparatus includes a device for generating pulses which contact a given surface at different incident angles. The light scattered from the pulses may be analyzed at a determining part to determine a status of the given surface. In another embodiment, the method includes generating first and second pulse sequences and adjusting a path of at least a portion of at least one of the first and second pulse sequences such that the first and second pulse sequences are incident upon a given surface at different incident angles.
    Type: Application
    Filed: May 20, 2005
    Publication date: November 24, 2005
    Inventors: Tae-Soo Kang, Kyoo-Chul Cho, Soo-Yeol Choi, Sam-Dong Choi
  • Publication number: 20050016470
    Abstract: A susceptor for use in a deposition apparatus includes a recess in which a wafer is received, and a stress-reducing bumper disposed along the side of the recess. The stress-reducing bumper is of material having ductility at a relatively high temperature. Therefore, when the wafer contacts the stress-reducing bumper, such as may occur due to thermal expansion of the wafer during processing, the force of the impact on the wafer is minimized by an elastic deformation of the stress-reducing bumper. As a result, defects, such as slip dislocations at the outer peripheral edge of the wafer, are prevented.
    Type: Application
    Filed: July 26, 2004
    Publication date: January 27, 2005
    Inventors: Tae-Soo Kang, Soo-Yeol Choi, Kyoo-Chul Cho, Gi-Jung Kim, Jin-Ho Kim, Tae-Yeol Heo
  • Publication number: 20040157044
    Abstract: An anti-reflective and anti-static multilayer structure for display device, comprising a glass substrate, and an ITO layer, a first Nb2O5 layer, a first SiO2 layer, a second Nb2O5 layer and a second SiO2 layer, which are successively formed on the glass substrate, achieves good film adhesive strength, solidity and enhanced photoreflectance.
    Type: Application
    Filed: December 31, 2003
    Publication date: August 12, 2004
    Applicant: Samsung Corning Co., Ltd.
    Inventors: Tae Soo Kang, Je Choon Ryoo, Kyeong Keun Woo, Cha Hyun Ku, Jeong Hong Oh, Kyo Jeong Kim
  • Publication number: 20030027001
    Abstract: An anti-reflective and anti-static multilayer structure for display device, comprising a glass substrate, and an ITO layer, a first Nb2O5 layer, a first SiO2 layer, a second Nb2O5 layer and a second SiO2 layer, which are successively formed on the glass substrate, achieves good film adhesive strength, solidity and enhanced photoreflectance.
    Type: Application
    Filed: July 31, 2002
    Publication date: February 6, 2003
    Inventors: Tae Soo Kang, Je Choon Ryoo, Kyeong Keun Woo, Cha Hyun Ku, Jeong Hong Oh, Kyo Jeong Kim
  • Patent number: D329850
    Type: Grant
    Filed: February 2, 1990
    Date of Patent: September 29, 1992
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Tae Soo Kang