Patents by Inventor Tae Young Rhee

Tae Young Rhee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240145672
    Abstract: Provided is a positive electrode active material which includes an inner region that is a region from the center of the positive electrode active material particle to R/2, and an outer region that is a region from R/2 to the surface of the positive electrode active material particle, wherein R is a distance from the center of the positive electrode active material particle to the surface thereof. The positive electrode active material further includes 25% to 80% of crystallites C with respect to a total number of crystallites in the outer region. The crystallites C have a high crystallite long-axis orientation degree of 0.5 to 1 and a low crystallite c-axis orientation degree less than 0.5. Thus, the positive electrode active material has high capacity characteristics and a small amount of gas generated.
    Type: Application
    Filed: March 22, 2022
    Publication date: May 2, 2024
    Applicant: LG Chem, Ltd.
    Inventors: Won Sig Jung, Hwan Young Choi, Jong Pil Kim, Yeo June Yoon, Kang Hyeon Lee, Tae Young Rhee, Yong Jo Jung
  • Publication number: 20240088379
    Abstract: Provided is a positive electrode active material which includes an inner region that is a region from the center of the positive electrode active material particle to R/2; and an outer region that is a region from R/2 to the surface of the positive electrode active material particle, wherein R is a distance from the center of the positive electrode active material particle to the surface thereof. The positive electrode active material further includes 30% to 80% of crystallites A with respect to a total number of crystallites in the outer region of the positive electrode active material, the crystallites A having high crystallite long-axis orientation degree and crystallite c-axis orientation degree. Thus, the positive electrode active material can achieve excellent capacity characteristics and service life characteristics.
    Type: Application
    Filed: March 22, 2022
    Publication date: March 14, 2024
    Applicant: LG Chem, Ltd.
    Inventors: Won Sig Jung, Hwan Young Choi, Jong Pil Kim, Yeo June Yoon, Kang Hyeon Lee, Tae Young Rhee, Yong Jo Jung
  • Publication number: 20230268489
    Abstract: A method of preparing a positive electrode active material which includes a first step of preparing a cake including a lithium transition metal oxide having a lithium borate compound formed on a surface thereof by mixing a positive electrode active material precursor having a specific composition, a lithium-containing raw material, and a boron-containing raw material and sintering the mixture, and a second step of grinding the cake and washing the ground cake to prepare a lithium transition metal oxide having the lithium borate compound removed therefrom. The method reduces the problems of breaking lithium transition metal oxide during the post processing steps by reduction in cake strength and change in the strength over time, thereby providing a positive electrode active material having improved quality.
    Type: Application
    Filed: August 23, 2021
    Publication date: August 24, 2023
    Applicant: LG Chem, Ltd.
    Inventors: Won Sig Jung, Yeo June Yoon, Kang Hyeon Lee, Tae Young Rhee, Yong Jo Jung
  • Publication number: 20230142182
    Abstract: A positive electrode active material, a positive electrode including the positive electrode active material, and a lithium secondary battery including the same are disclosed herein. In some embodiments, the positive electrode active material includes a lithium transition metal oxide containing nickel in an amount of 60 mol% or greater based on a total number of moles of transition metals in the lithium transition metal oxide, and in the form of a secondary particle which is an aggregate of primary particles. The positive active material satisfies Equation (1) : -0.021x + 4.0 ? y ? -0.021x + 5.5, wherein x is a crystal grain size (nm) of the positive electrode active material, and y is a crystal grain aspect ratio of the positive electrode active material.
    Type: Application
    Filed: October 23, 2020
    Publication date: May 11, 2023
    Applicant: LG Chem, Ltd.
    Inventors: Won Sig Jung, Kang Hyeon Lee, Tae Young Rhee, Hwan Young Choi
  • Publication number: 20220320617
    Abstract: A method for separating a transition metal from a waste positive electrode material includes step 1 of preparing a waste positive electrode material represented by Formula 1, step 2 of heat treating the waste positive electrode material in an inert gas atmosphere or an oxygen atmosphere to phase separate the waste positive electrode material into a lithium oxide and a metal oxide, step 3 of cooling an obtained product of step 2 to room temperature in an inert atmosphere, and step 4 of mixing a cooled product cooled to room temperature in step 3 with distilled water, and then filtering the mixture to leach a transition metal.
    Type: Application
    Filed: December 15, 2020
    Publication date: October 6, 2022
    Applicant: LG Chem, Ltd.
    Inventors: Won Sig Jung, Tae Young Rhee, Hwan Young Choi