Patents by Inventor Taeko Inoue

Taeko Inoue has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9572834
    Abstract: In some embodiments, the present invention provides methods of treating oxidative stress in a subject by administering a therapeutic composition to the subject. In some embodiments, the therapeutic composition comprises a carbon nanomaterial with anti-oxidant activity. In some embodiments, the anti-oxidant activity of the carbon nanomaterial corresponds to ORAC values between about 200 to about 15,000. In some embodiments, the administered carbon nanomaterials include at least one of single-walled nanotubes, double-walled nanotubes, triple-walled nanotubes, multi-walled nanotubes, ultra-short nanotubes, graphene, graphene nanoribbons, graphite, graphite oxide nanoribbons, carbon black, oxidized carbon black, hydrophilic carbon clusters, and combinations thereof. In some embodiments, the carbon nanomaterial is an ultra-short single-walled nanotube that is functionalized with a plurality of solubilizing groups.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: February 21, 2017
    Assignees: WILLIAM MARSH RICE UNIVERSITY, BAYLOR COLLEGE OF MEDICINE
    Inventors: James M. Tour, Jacob Berlin, Daniela Marcano, Ashley Leonard, Thomas A. Kent, Robia G. Pautler, Brittany Bitner, Taeko Inoue
  • Publication number: 20160193249
    Abstract: In some embodiments, the present disclosure pertains to methods of treating an inflammatory disease in a subject by administering a carbon material to the subject. In some embodiments, the carbon material selectively targets T cells in the subject. In some embodiments, the carbon material includes poly(ethylene glycol)-functionalized hydrophilic carbon clusters. In some embodiments, the administration of the carbon material to the subject reduces or inhibits T cell-mediated reactions in the subject. In some embodiments, the carbon material selectively targets T cells over other types of immune cells by preferential uptake into the T cells. In some embodiments, the carbon material reduces or inhibits proliferation of targeted T cells, reduces or inhibits cytokine production by targeted T cells, and reduces intracellular oxidant content in targeted T cells. In some embodiments, the present disclosure pertains to methods of modulating T cells ex-vivo by incubating the T cells with a carbon material.
    Type: Application
    Filed: September 3, 2014
    Publication date: July 7, 2016
    Inventors: James M. Tour, Christine Beeton, Redwan U. Huq, Taeko Inoue, Robia G. Pautler, Errol L.G. Samuel
  • Publication number: 20140120081
    Abstract: In some embodiments, the present invention provides methods of treating oxidative stress in a subject by administering a therapeutic composition to the subject. In some embodiments, the therapeutic composition comprises a carbon nanomaterial with anti-oxidant activity. In some embodiments, the anti-oxidant activity of the carbon nanomaterial corresponds to ORAC values between about 200 to about 15,000. In some embodiments, the administered carbon nanomaterials include at least one of single-walled nanotubes, double-walled nanotubes, triple-walled nanotubes, multi-walled nanotubes, ultra-short nanotubes, graphene, graphene nanoribbons, graphite, graphite oxide nanoribbons, carbon black, oxidized carbon black, hydrophilic carbon clusters, and combinations thereof. In some embodiments, the carbon nanomaterial is an ultra-short single-walled nanotube that is functionalized with a plurality of solubilizing groups.
    Type: Application
    Filed: April 26, 2012
    Publication date: May 1, 2014
    Applicants: Baylor College of Medicine, William Marsh Rice University
    Inventors: James M. Tour, Jacob Berlin, Daniela Marcano, Ashley Leonard, Thomas A. Kent, Robia G. Pautler, Brittany Bitner, Taeko Inoue