Patents by Inventor Tai Chan

Tai Chan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11960268
    Abstract: Examples discussed herein relate to managing power allocation for devices, such as network devices, with processing chip. In some examples, based on determining that a first temperature measurement of the processing chip does not satisfy an operating temperature threshold, the network device allocates power from a power source to a first heating element of the network device to heat the processing chip & allocates power from the power source to a second heating element of the network device to heat the processing chip. Based on determining that a second temperature measurement satisfies the operating temperature threshold, the network device allocates power from the power source to a set of power over ethernet ports of the network device & the first amount of power from the power source selectively to the first heating element to heat the processing chip.
    Type: Grant
    Filed: May 4, 2021
    Date of Patent: April 16, 2024
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Khai Chiah Chng, Mun Hoong Tai, Kum Cheong Adam Chan, Song Poh Chai
  • Patent number: 11935954
    Abstract: A semiconductor device structure includes a fin structure formed over a substrate. The structure also includes nanostructures formed over the fin structure. The structure also includes a gate structure wrapped around the nanostructures. The structure also includes a first inner spacer formed beside the gate structure. The structure also includes a second inner spacer formed beside the first inner spacer. The structure also includes spacer layers formed over opposite sides of the gate structure above the nanostructures. The structure also includes source/drain epitaxial structures formed over opposite sides of the fin structure. The second inner spacer is partially embedded in the source/drain epitaxial structures.
    Type: Grant
    Filed: July 30, 2021
    Date of Patent: March 19, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Bwo-Ning Chen, Xusheng Wu, Chang-Miao Liu, Chien-Tai Chan
  • Publication number: 20230378268
    Abstract: A semiconductor device structure and a formation method are provided. The method includes forming a protruding structure over a substrate. The protruding structure has multiple sacrificial layers and multiple semiconductor layers, and the sacrificial layers and the semiconductor layers have an alternating configuration. The method also includes forming a gate stack to wrap a portion of the protruding structure. The method further includes forming an epitaxial structure abutting edges of the semiconductor layers. The formation of the epitaxial structure includes forming a lower semiconductor portion on a bottom of the recess and forming an upper semiconductor portion over the lower semiconductor portion. The upper semiconductor portion and the lower semiconductor portion are oppositely doped.
    Type: Application
    Filed: May 17, 2022
    Publication date: November 23, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chien-Tai CHAN, Yu-Ching HUANG, Chien-Chih LIN, Hsueh-Jen YANG
  • Publication number: 20230088366
    Abstract: A light-transmitting display panel, a manufacturing method thereof and a display device. The light-transmitting display panel includes a substrate and a light-emitting device layer disposed on the substrate, the light-emitting device layer including a plurality of pixel units and a shielding layer with a plurality of openings, each of the pixel units disposed correspondingly in one of the openings, and each pixel unit including a transparent light transmission portion and a plurality of sub-pixels emitting light of at least three colors distributed around the transparent light transmission portion.
    Type: Application
    Filed: November 21, 2022
    Publication date: March 23, 2023
    Applicant: Hefei Visionox Technology Co., Ltd.
    Inventor: Huang-Tai CHAN
  • Publication number: 20230035791
    Abstract: A semiconductor device structure includes a fin structure formed over a substrate. The structure also includes nanostructures formed over the fin structure. The structure also includes a gate structure wrapped around the nanostructures. The structure also includes a first inner spacer formed beside the gate structure. The structure also includes a second inner spacer formed beside the first inner spacer. The structure also includes spacer layers formed over opposite sides of the gate structure above the nanostructures. The structure also includes source/drain epitaxial structures formed over opposite sides of the fin structure. The second inner spacer is partially embedded in the source/drain epitaxial structures.
    Type: Application
    Filed: July 30, 2021
    Publication date: February 2, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Bwo-Ning CHEN, Xusheng WU, Chang-Miao LIU, Chien-Tai CHAN
  • Publication number: 20220336644
    Abstract: The present disclosure describes a semiconductor structure and a method for forming the same. The semiconductor structure can include a substrate, a first fin structure with a first height and a first width formed over the substrate, a second fin structure with a second height and a second width formed over the substrate, and an insulating stack formed over lower portions of the first and second fin structures. The second height can be substantially equal to the first height and the second width can be greater than the first width. A top surface of the insulating stack can be below top surfaces of the first and second fin structures.
    Type: Application
    Filed: June 30, 2022
    Publication date: October 20, 2022
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Su-Hao Liu, Huicheng Chang, Chien-Tai Chan, Liang-Yin Chen, Yee-Chia Yeo, Szu-Ying Chen
  • Patent number: 11380782
    Abstract: The present disclosure describes a semiconductor structure and a method for forming the same. The semiconductor structure can include a substrate, a first fin structure with a first height and a first width formed over the substrate, a second fin structure with a second height and a second width formed over the substrate, and an insulating stack formed over lower portions of the first and second fin structures. The second height can be substantially equal to the first height and the second width can be greater than the first width. A top surface of the insulating stack can be below top surfaces of the first and second fin structures.
    Type: Grant
    Filed: August 18, 2020
    Date of Patent: July 5, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Su-Hao Liu, Huicheng Chang, Chien-Tai Chan, Liang-Yin Chen, Yee-Chia Yeo, Szu-Ying Chen
  • Publication number: 20220059679
    Abstract: The present disclosure describes a semiconductor structure and a method for forming the same. The semiconductor structure can include a substrate, a first fin structure with a first height and a first width formed over the substrate, a second fin structure with a second height and a second width formed over the substrate, and an insulating stack formed over lower portions of the first and second fin structures. The second height can be substantially equal to the first height and the second width can be greater than the first width. A top surface of the insulating stack can be below top surfaces of the first and second fin structures.
    Type: Application
    Filed: August 18, 2020
    Publication date: February 24, 2022
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Su-Hao LIU, Huicheng CHANG, Chien-Tai CHAN, Liang-Yin CHEN, Yee-Chia YEO, Szu-Ying CHEN
  • Patent number: 11227951
    Abstract: A FinFET device and a method of forming the same are disclosed. In accordance with some embodiments, a FinFET device includes a substrate having at least one fin, a gate stack across the at least one fin, a strained layer aside the gate stack and a silicide layer over the strained layer. The strained layer has a boron surface concentration greater than about 2E20 atom/cm3 within a depth range of about 0-5 nm from a surface of the strained layer.
    Type: Grant
    Filed: May 19, 2020
    Date of Patent: January 18, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Hsiung Tsai, Chien-Tai Chan, Ziwei Fang, Kei-Wei Chen, Huai-Tei Yang
  • Patent number: 11211455
    Abstract: Embodiments of mechanisms for forming dislocations in source and drain regions of finFET devices are provided. The mechanisms involve recessing fins and removing the dielectric material in the isolation structures neighboring fins to increase epitaxial regions for dislocation formation. The mechanisms also involve performing a pre-amorphous implantation (PAI) process either before or after the epitaxial growth in the recessed source and drain regions. An anneal process after the PAI process enables consistent growth of the dislocations in the source and drain regions. The dislocations in the source and drain regions (or stressor regions) can form consistently to produce targeted strain in the source and drain regions to improve carrier mobility and device performance for NMOS devices.
    Type: Grant
    Filed: July 20, 2020
    Date of Patent: December 28, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun Hsiung Tsai, Wei-Yuan Lu, Chien-Tai Chan, Wei-Yang Lee, Da-Wen Lin
  • Patent number: 11195931
    Abstract: A gate structure, a semiconductor device, and the method of forming a semiconductor device are provided. In various embodiments, the gate structure includes a gate stack and a doped spacer overlying a sidewall of the gate stack. The gate stack contains a doped work function metal (WFM) stack and a metal gate electrode overlying the doped WFM stack.
    Type: Grant
    Filed: August 17, 2020
    Date of Patent: December 7, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Hsiung Tsai, Kuo-Feng Yu, Chien-Tai Chan, Ziwei Fang, Kei-Wei Chen, Huai-Tei Yang
  • Publication number: 20200381529
    Abstract: A gate structure, a semiconductor device, and the method of forming a semiconductor device are provided. In various embodiments, the gate structure includes a gate stack and a doped spacer overlying a sidewall of the gate stack. The gate stack contains a doped work function metal (WFM) stack and a metal gate electrode overlying the doped WFM stack.
    Type: Application
    Filed: August 17, 2020
    Publication date: December 3, 2020
    Inventors: Chun-Hsiung Tsai, Kuo-Feng Yu, Chien-Tai Chan, Ziwei Fang, Kei-Wei Chen, Huai-Tei Yang
  • Publication number: 20200350404
    Abstract: Embodiments of mechanisms for forming dislocations in source and drain regions of finFET devices are provided. The mechanisms involve recessing fins and removing the dielectric material in the isolation structures neighboring fins to increase epitaxial regions for dislocation formation. The mechanisms also involve performing a pre-amorphous implantation (PAI) process either before or after the epitaxial growth in the recessed source and drain regions. An anneal process after the PAI process enables consistent growth of the dislocations in the source and drain regions. The dislocations in the source and drain regions (or stressor regions) can form consistently to produce targeted strain in the source and drain regions to improve carrier mobility and device performance for NMOS devices.
    Type: Application
    Filed: July 20, 2020
    Publication date: November 5, 2020
    Inventors: Chun Hsiung Tsai, Wei-Yuan Lu, Chien-Tai Chan, Wei-Yang Lee, Da-Wen Lin
  • Publication number: 20200279949
    Abstract: A FinFET device and a method of forming the same are disclosed. In accordance with some embodiments, a FinFET device includes a substrate having at least one fin, a gate stack across the at least one fin, a strained layer aside the gate stack and a silicide layer over the strained layer. The strained layer has a boron surface concentration greater than about 2E20 atom/cm3 within a depth range of about 0-5 nm from a surface of the strained layer.
    Type: Application
    Filed: May 19, 2020
    Publication date: September 3, 2020
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Hsiung Tsai, Chien-Tai Chan, Ziwei Fang, Kei-Wei Chen, Huai-Tei Yang
  • Patent number: 10749008
    Abstract: A gate structure, a semiconductor device, and the method of forming a semiconductor device are provided. In various embodiments, the gate structure includes a gate stack and a doped spacer overlying a sidewall of the gate stack. The gate stack contains a doped work function metal (WFM) stack and a metal gate electrode overlying the doped WFM stack.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: August 18, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Hsiung Tsai, Kuo-Feng Yu, Chien-Tai Chan, Ziwei Fang, Kei-Wei Chen, Huai-Tei Yang
  • Patent number: 10741642
    Abstract: Embodiments of mechanisms for forming dislocations in source and drain regions of finFET devices are provided. The mechanisms involve recessing fins and removing the dielectric material in the isolation structures neighboring fins to increase epitaxial regions for dislocation formation. The mechanisms also involve performing a pre-amorphous implantation (PAI) process either before or after the epitaxial growth in the recessed source and drain regions. An anneal process after the PAI process enables consistent growth of the dislocations in the source and drain regions. The dislocations in the source and drain regions (or stressor regions) can form consistently to produce targeted strain in the source and drain regions to improve carrier mobility and device performance for NMOS devices.
    Type: Grant
    Filed: December 5, 2018
    Date of Patent: August 11, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun Hsiung Tsai, Wei-Yuan Lu, Chien-Tai Chan, Wei-Yang Lee, Da-Wen Lin
  • Patent number: 10665717
    Abstract: A FinFET device and a method of forming the same are disclosed. In accordance with some embodiments, a FinFET device includes a substrate having at least one fin, a gate stack across the at least one fin, a strained layer aside the gate stack and a silicide layer over the strained layer. The strained layer has a boron surface concentration greater than about 2E20 atom/cm3 within a depth range of about 0-5 nm from a surface of the strained layer.
    Type: Grant
    Filed: August 26, 2018
    Date of Patent: May 26, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun Hsiung Tsai, Chien-Tai Chan, Ziwei Fang, Kei-Wei Chen, Huai-Tei Yang
  • Patent number: 10515856
    Abstract: A method includes forming first and second fins of a finFET extending above a semiconductor substrate, with a shallow trench isolation (STI) region in between, and a distance between a top surface of the STI region and top surfaces of the first and second fins. First and second fin extensions are provided on top and side surfaces of the first and second fins above the top surface of the STI region. Material is removed from the STI region, to increase the distance between the top surface of the STI region and top surfaces of the first and second fins. A conformal stressor dielectric material is deposited over the fins and STI region. The conformal dielectric stressor material is reflowed, to flow into a space between the first and second fins above a top surface of the STI region, to apply stress to a channel of the finFET.
    Type: Grant
    Filed: February 8, 2019
    Date of Patent: December 24, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chia-Pin Linus Lin, Chien-Tai Chan, Hsien-Chin Lin, Shyue-Shyh Lin
  • Patent number: 10504898
    Abstract: A fin field-effect transistor (FinFET) structure and a method for forming the same are provided. The FinFET structure includes a first fin structure that protrudes from a first region of a substrate. A second fin structure protrudes from a second region of the substrate. Isolation regions cover lower portions of the first fin structure and the second fin structure and leave upper portions of the first fin structure and the second fin structure above the isolation regions. A first liner layer is positioned between the lower portion of the first fin structure and the isolation regions in the first region. A second liner layer covers the lower portion of the second fin structure and is positioned between the second fin structure and the isolation regions in the second region. The first liner layer and the second liner layer are formed of different materials.
    Type: Grant
    Filed: August 28, 2017
    Date of Patent: December 10, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yin Wang, Chien-Chih Lin, Chien-Tai Chan, Wei-Ken Lin, Chun-Te Li
  • Publication number: 20190181048
    Abstract: A method includes forming first and second fins of a finFET extending above a semiconductor substrate, with a shallow trench isolation (STI) region in between, and a distance between a top surface of the STI region and top surfaces of the first and second fins. First and second fin extensions are provided on top and side surfaces of the first and second fins above the top surface of the STI region. Material is removed from the STI region, to increase the distance between the top surface of the STI region and top surfaces of the first and second fins. A conformal stressor dielectric material is deposited over the fins and STI region. The conformal dielectric stressor material is reflowed, to flow into a space between the first and second fins above a top surface of the STI region, to apply stress to a channel of the finFET.
    Type: Application
    Filed: February 8, 2019
    Publication date: June 13, 2019
    Inventors: Chia-Pin LIN, Chien-Tai CHAN, Hsien-Chin LIN, Shyue-Shyh LIN