Patents by Inventor Tai Jing

Tai Jing has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9100229
    Abstract: A method of calibrating data slicer-latches in a receiver to remove offset errors in the slicer-latches. A known voltage is applied to all but one of the inputs of the slicer-latch. The remaining input receives an offset cancelation voltage from a DAC is stepped upward from a minimum voltage until the slicer-latch output transitions by incrementing a codeword to the DAC and the codeword that resulted the transition is saved. Then the offset cancelation voltage is swept downward in steps from a maximum voltage until the slicer-latch output transitions and the codeword that caused the transition is averaged with the stored codeword. The average of the codewords is applied to the DAC to generate the offset cancelation voltage used during normal operation of the receiver.
    Type: Grant
    Filed: September 25, 2013
    Date of Patent: August 4, 2015
    Assignee: AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD.
    Inventors: Tai Jing, Hairong Gao
  • Publication number: 20150085957
    Abstract: A method of calibrating data slicer-latches in a receiver to remove offset errors in the slicer-latches. A known voltage is applied to all but one of the inputs of the slicer-latch. The remaining input receives an offset cancelation voltage from a DAC is stepped upward from a minimum voltage until the slicer-latch output transitions by incrementing a codeword to the DAC and the codeword that resulted the transition is saved. Then the offset cancelation voltage is swept downward in steps from a maximum voltage until the slicer-latch output transitions and the codeword that caused the transition is averaged with the stored codeword. The average of the codewords is applied to the DAC to generate the offset cancelation voltage used during normal operation of the receiver.
    Type: Application
    Filed: September 25, 2013
    Publication date: March 26, 2015
    Applicant: LSI Corporation
    Inventors: Tai Jing, Hairong Gao
  • Patent number: 8989254
    Abstract: An apparatus includes a first coding circuit, a second coding circuit, and a plurality of source series terminated driver slices. The first coding circuit may be configured to generate a plurality of digital filter control codes in response to a plurality of filter coefficients and a control signal. The control signal selects between a plurality of communication specifications. The second coding circuit may be configured to generate a plurality of driver slice control codes in response to the plurality of digital filter control codes. The plurality of source series terminated driver slices configured to generate an output signal according to a selected one of the plurality of communication specifications in response to the plurality of driver slice control codes, a main cursor signal, a pre-cursor signal, and a post cursor signal.
    Type: Grant
    Filed: March 27, 2013
    Date of Patent: March 24, 2015
    Assignee: Avago Technologies General IP (Singapore) Pte. Ltd.
    Inventors: Tai Jing, Lijun Li, Shiva Prasad Kotagiri
  • Publication number: 20140181845
    Abstract: An apparatus includes a first coding circuit, a second coding circuit, and a plurality of source series terminated driver slices. The first coding circuit may be configured to generate a plurality of digital filter control codes in response to a plurality of filter coefficients and a control signal. The control signal selects between a plurality of communication specifications. The second coding circuit may be configured to generate a plurality of driver slice control codes in response to the plurality of digital filter control codes. The plurality of source series terminated driver slices configured to generate an output signal according to a selected one of the plurality of communication specifications in response to the plurality of driver slice control codes, a main cursor signal, a pre-cursor signal, and a post cursor signal.
    Type: Application
    Filed: March 27, 2013
    Publication date: June 26, 2014
    Applicant: LSI Corporation
    Inventors: Tai Jing, Lijun Li, Shiva Prasad Kotagiri
  • Patent number: 8508308
    Abstract: Described embodiments provide a method of calibrating, by a calibration engine, a phase-locked loop (PLL) having one or more adjustable oscillators. The method includes entering a calibration mode of the PLL. The PLL is set to an initial state, thereby selecting one of the adjustable oscillators for calibration, an initial threshold window, and an initial tuning band of the selected adjustable oscillator. If the control signal of the selected adjustable oscillator is not within the initial threshold window, the calibration engine iteratively adjusts at least one of: (i) the selected tuning band of the selected adjustable oscillator, (ii) the selected adjustable oscillator, and (iii) the selected threshold window until the control signal of the selected adjustable oscillator is within the adjusted threshold window. If the control signal is within the threshold window, the one or more calibration settings of the PLL are stored and used to set the PLL operation.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: August 13, 2013
    Assignee: LSI Corporation
    Inventors: Yikui Jen Dong, Freeman Y. Zhong, Tai Jing, Chaitanya Palusa
  • Publication number: 20130057325
    Abstract: Described embodiments provide a method of calibrating, by a calibration engine, a phase-locked loop (PLL) having one or more adjustable oscillators. The method includes entering a calibration mode of the PLL. The PLL is set to an initial state, thereby selecting one of the adjustable oscillators for calibration, an initial threshold window, and an initial tuning band of the selected adjustable oscillator. If the control signal of the selected adjustable oscillator is not within the initial threshold window, the calibration engine iteratively adjusts at least one of: (i) the selected tuning band of the selected adjustable oscillator, (ii) the selected adjustable oscillator, and (iii) the selected threshold window until the control signal of the selected adjustable oscillator is within the adjusted threshold window. If the control signal is within the threshold window, the one or more calibration settings of the PLL are stored and used to set the PLL operation.
    Type: Application
    Filed: September 1, 2011
    Publication date: March 7, 2013
    Inventors: Yikui Jen Dong, Freeman Y. Zhong, Tai Jing, Chaitanya Palusa
  • Patent number: 7016410
    Abstract: A method for determining quantization numbers for each macro block in one video segment having a prescribed capacity is disclosed. The quantization numbers determine how much data will be preserved for that macro block. The method begins by determining a level of complexity for each macro block. Next, initial quantization numbers are chosen for the macro blocks by choosing the largest values possible without exceeding the prescribed capacity of the video segment. Final quantization numbers are selected based on respective ones of the initial quantization numbers proportioned according to the level of complexity for that macro block. The final quantization numbers may be increased or decreased so that the capacity of the video segment is maximized but not exceeded.
    Type: Grant
    Filed: August 23, 2002
    Date of Patent: March 21, 2006
    Assignee: ESS Technology, Inc.
    Inventors: Michael Chang, Ying-Ming Wang, Tai Jing
  • Publication number: 20040037356
    Abstract: A method for determining quantization numbers for each macro block in one video segment having a prescribed capacity is disclosed. The quantization numbers determine how much data will be preserved for that macro block. The method begins by determining a level of complexity for each macro block. Next, initial quantization numbers are chosen for the macro blocks by choosing the largest values possible without exceeding the prescribed capacity of the video segment. Final quantization numbers are selected based on respective ones of the initial quantization numbers proportioned according to the level of complexity for that macro block. The final quantization numbers may be increased or decreased so that the capacity of the video segment is maximized but not exceeded.
    Type: Application
    Filed: August 23, 2002
    Publication date: February 26, 2004
    Inventors: Michael Chang, Ying-Ming Wang, Tai Jing
  • Patent number: 6504871
    Abstract: A system and method for performing an inverse discrete cosine transform (IDCT) based on DCT data is disclosed. The system is IEEE compliant and transforms one block (8×8) of pixels in 64 cycles. The IDCT processor receives the DCT input, produces the matrix (QXTQ)P, or XQP, in IDCT Stage 1 and stores the result in transpose RAM. IDCT Stage 2 performs the transpose of the result of IDCT Stage 1 and multiplies the result by P, completing the IDCT process and producing the IDCT output. The system performs the matrix function QXtQ, where X represents the DCT data and Q is a predetermined diagonal matrix. The resultant value is adjusted by discarding selected bits, and the system then postmultiplies this with the elements of a predetermined P matrix, and discards selected bits. The system performs a conversion and storing function and performs a sign change to obtain QXtQP. This completes first stage processing, which is then passed to transpose RAM.
    Type: Grant
    Filed: July 31, 1997
    Date of Patent: January 7, 2003
    Assignee: LSI Logic Corporation
    Inventors: Surya P. Varanasi, Tai Jing
  • Patent number: 6301304
    Abstract: An inverse quantizer is provided with a reduced bit-width. In one embodiment, the inverse quantizer receives quantized DCT coefficients in sign+magnitude form with 1+11 bits of resolution, and produces reconstructed DCT coefficients with 1+11 bits of resolution. Although this is less than the theoretical minimum bit-width required to represent the entire reconstructed DCT coefficient range [−2048, 2047] mandated by the MPEG standard, certain IDCT implementations will maintain IEEE compliance when the −2048 value is replaced with −2047. (An example of one such implementation is provided in a co-pending application.) This reduces the range to [−2047, 2047]. In one embodiment, the inverse quantizer includes a dead-zone expander, a quantization multiplier, a mismatch controller, and a bit-width reducer. The dead-zone expander receives quantized coefficients with 1+11 bits of resolution, doubles them, and then increases their magnitude by one.
    Type: Grant
    Filed: June 17, 1998
    Date of Patent: October 9, 2001
    Assignee: LSI Logic Corporation
    Inventors: Tai Jing, Surya Varanasi
  • Patent number: 6236681
    Abstract: A system and method for decoding an MPEG video bitstream comprising several macroblocks of data is disclosed. The system comprises a macroblock core (MBCORE) which processes video bitstream data and computes discrete cosine transform data corresponding to the processed video bitstream, and a parser which parses the video bitstream macroblocks into multiple data blocks used in subsequent stages of decoding. The system further includes a transformation/motion compensation core (TMCCORE) which is divided into multiple stages. The TMCCORE includes an IDCT first stage, an intermediate memory (transpose RAM), and an IDCT second stage. The IDCT first stage passes data to memory and the IDCT second stage receives data from memory. The IDCT first stage has the ability to operate on a first data block while the second stage simultaneously operates on a second data block. The TMCCORE receives the discrete cosine transform data from the MBCORE and calculates and reconstructs a frame therefrom using motion compensation.
    Type: Grant
    Filed: July 31, 1997
    Date of Patent: May 22, 2001
    Assignee: LSI Logic Corporation
    Inventors: Surya P. Varanasi, Tai Jing, Satish Soman
  • Patent number: 6122316
    Abstract: A system and method for decoding an MPEG video bitstream comprises, comprising a macroblock core (MBCORE) which processes video bitstream data and computes discrete cosine transform data and a parser which parses the video bitstream macroblocks into multiple data blocks used in subsequent stages of decoding. fixed length data words comprising variable length objects using a novel rotating register arrangement. A multistage transformation/motion compensation core (TMCCORE) uses intermediate memory. The IDCT first stage has the ability to operate on a first data block while the second stage simultaneously operates on a second data block. The TMCCORE receives the discrete cosine transform data from the MBCORE and calculates and reconstructs a frame therefrom using motion compensation. The MBCORE can operate on data from a first macroblock while the TMCCORE simultaneously operates on data from a second macroblock.
    Type: Grant
    Filed: July 31, 1997
    Date of Patent: September 19, 2000
    Assignee: LSI Logic Corporation
    Inventors: Surya P. Varanasi, Satish Soman, Tai Jing