Patents by Inventor Taichi Hirano

Taichi Hirano has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150333456
    Abstract: There is provided a connector including a signal pin that stretches in a first direction and transmits a signal, a substrate that has one surface on which the signal pin is formed, and an electric conductor layer that has ground potential, the electric conductor layer being formed on an opposite surface of the surface of the substrate on which the signal pin is formed.
    Type: Application
    Filed: November 19, 2013
    Publication date: November 19, 2015
    Applicant: SONY CORPORATION
    Inventors: KAZUAKI TOBA, TAICHI HIRANO, AKIRA MATSUDA
  • Publication number: 20150250378
    Abstract: There is provided a wire connection device including an outer frame that has a tubular shape, and a plurality of contacts that are provided in the outer frame, and that have a plurality of pairs of differential contacts to which a plurality of pairs of differential signals are respectively allocated, and a plurality of ground contacts each to which ground is allocated. When viewed from a direction along a central axis of the outer frame, the plurality of contacts are arranged side by side in two rows in a manner that the differential contacts of each pair can be adjacent to each other and in a manner that the number of the ground contacts adjacent to one of the differential contacts of each pair is equal to the number of the ground contacts adjacent to the other one of the differential contacts of the pair.
    Type: Application
    Filed: February 23, 2015
    Publication date: September 10, 2015
    Applicants: SONY OLYMPUS MEDICAL SOLUTIONS INC., SONY CORPORATION
    Inventors: Kei TOMATSU, Taichi HIRANO, Akira MATSUDA
  • Publication number: 20150114563
    Abstract: A plasma processing apparatus includes a high frequency power supply turning a high frequency power ON/OFF and supplying the high frequency power to either one of upper and lower electrodes. A matching circuit and a power transmission line are provided between the high frequency power supply and the either one of the electrodes. A probe detector measures electrical characteristics on the power transmission line and generates measurement signals. A processing unit samples the measurement signals, generates sample values, The processing unit receives a pulse signal corresponding to ON/OFF switching of the high frequency power, generates sample values by sampling the measurement signals at a sampling interval for a period after the lapse of a mask period from an ascending timing thereof until a descending timing thereof, and selects sample values obtained through the last one or more sampling with respect to the descending timing, as detection values.
    Type: Application
    Filed: May 27, 2013
    Publication date: April 30, 2015
    Inventors: Taichi Hirano, Kenji Sato
  • Patent number: 8999068
    Abstract: Provided is a chamber cleaning method capable of efficiently removing a CF-based shoulder deposit containing Si and Al deposited on an outer periphery of an ESC. A mixed gas of an O2 gas and a F containing gas is supplied toward an outer periphery 24a of an ESC 24 at a pressure ranging from about 400 mTorr to about 800 mTorr; plasma generated from the mixed gas is irradiated onto the outer periphery 24a of the ESC 24; an O2 single gas as a mask gas is supplied to the top surface of ESC 24 except the outer periphery 24a; and the shoulder deposit 50 adhered to the outer periphery 24a is decomposed and removed while preventing the top surface of ESC 24 except the outer periphery 24a from being exposed to a F radical.
    Type: Grant
    Filed: September 1, 2010
    Date of Patent: April 7, 2015
    Assignee: Tokyo Electron Limited
    Inventors: Masanobu Honda, Hidetoshi Hanaoka, Taichi Hirano, Takanori Mimura, Manabu Iwata, Taketoshi Okajo
  • Publication number: 20150000842
    Abstract: A power supply system 90 includes high frequency power supplies 92 and 93 that supply a high frequency power for plasma generation; a DC power supply 91 that supplies a DC voltage to be applied to an electrode; and control unit 94 that controls the high frequency power supplies 92 and 93 and the DC power supply 91 including a first DC power supply unit 101 that supplies a first negative DC voltage V1, a second DC power supply unit 102 that supplies a second negative DC voltage V2 having a higher absolute value than the first negative DC voltage V1, and a selecting circuit 103 that selectively connects the first DC power supply unit 101 and the second DC power supply unit 102 to the electrode; and a discharging circuit 104 connected with a node 109 between the first DC power supply unit 101 and the selecting circuit 103.
    Type: Application
    Filed: February 19, 2013
    Publication date: January 1, 2015
    Inventors: Taichi Hirano, Fumitoshi Kumagai
  • Publication number: 20130243106
    Abstract: [Object] To provide a connector enabling high quality signal transmission while maintaining compatibility with the current HDMI connector, in a new HDMI interface using pins assigned to a shield, as a data pair. [Solution] Each of signal electrode pins 252, 152 is arrayed near a shell (grounding conductor) 253, 153 so as to couple with the shell, and differential signals are transmitted with single end. A ground plane 254, 154 is disposed between multiple signal electrode pins of a first stage and the plurality of signal electrode pins of a second stage within a dielectric 251, 151. Also, connection conductors 255, 155 electrically connecting the ground plane and the grounding conductor are disposed between each of the signal electrode pins of each of the stages within the dielectric 251, 151. With a pair of signal electrode pins transmitting differential signals, crosstalk from other signal electrode pins can be reduced, and high quality signal transmission is enabled.
    Type: Application
    Filed: December 2, 2011
    Publication date: September 19, 2013
    Applicant: SONY CORPORATION
    Inventors: Kazuaki Toba, Hideyuki Suzuki, Taichi Hirano
  • Patent number: 8512510
    Abstract: A plasma processing method is arranged to supply a predetermined process gas into a plasma generation space in which a target substrate is placed, and turn the process gas into plasma. The substrate is subjected to a predetermined plasma process by this plasma. The spatial distribution of density of the plasma and the spatial distribution of density of radicals in the plasma are controlled independently of each other relative to the substrate by a facing portion opposite the substrate to form a predetermined process state over the entire target surface of the substrate.
    Type: Grant
    Filed: May 16, 2011
    Date of Patent: August 20, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Akira Koshiishi, Jun Hirose, Masahiro Ogasawara, Taichi Hirano, Hiromitsu Sasaki, Tetsuo Yoshida, Michishige Saito, Hiroyuki Ishihara, Jun Ooyabu, Kohji Numata
  • Patent number: 8193097
    Abstract: A plasma processing apparatus, for performing a plasma processing on a substrate to be processed by generating a plasma of the processing gas in an evacuable processing chamber, includes an impedance adjusting mechanism. The impedance adjusting mechanism is provided with a resonance circuit formed to allow a radio frequency current to flow into the first electrode; a variable impedance unit installed on a power feed line to the first electrode; a detector for detecting an apparatus state to be used to search a resonance point of the resonance circuit; and a controller for searching a resonance point of the resonance circuit by detecting a signal of the apparatus state of the detector while varying a value of the variable impedance unit in a state where the plasma is formed and then adjusting the value of the variable impedance unit at the resonance point to a reference value.
    Type: Grant
    Filed: May 14, 2009
    Date of Patent: June 5, 2012
    Assignee: Tokyo Electron Limited
    Inventor: Taichi Hirano
  • Patent number: 8178444
    Abstract: A substrate processing method that can eliminate unevenness in the distribution of plasma. The method is for a substrate processing apparatus that has a processing chamber in which a substrate is housed, a mounting stage that is disposed in the processing chamber and on which the substrate is mounted, and an electrode plate that is disposed in the processing chamber such as to face the mounting stage, the electrode plate being made of silicon and connected to a radio-frequency power source, and carries out plasma processing on the substrate. In the plasma processing, the temperature of the electrode plate is measured, and based on the measured temperature, the temperature of the electrode plate is maintained lower than a critical temperature at which the specific resistance value of the silicon starts changing.
    Type: Grant
    Filed: February 2, 2009
    Date of Patent: May 15, 2012
    Assignee: Tokyo Electron Limited
    Inventors: Chishio Koshimizu, Taichi Hirano, Masanobu Honda, Shinji Himori
  • Publication number: 20110214813
    Abstract: A plasma processing method is arranged to supply a predetermined process gas into a plasma generation space in which a target substrate is placed, and turn the process gas into plasma. The substrate is subjected to a predetermined plasma process by this plasma. The spatial distribution of density of the plasma and the spatial distribution of density of radicals in the plasma are controlled independently of each other relative to the substrate by a facing portion opposite the substrate to form a predetermined process state over the entire target surface of the substrate.
    Type: Application
    Filed: May 16, 2011
    Publication date: September 8, 2011
    Inventors: Akira Koshiishi, Jun Hirose, Masahiro Ogasawara, Taichi Hirano, Hiromitsu Sasaki, Tetsuo Yoshida, Michishige Saito, Hiroyuki Ishihara, Jun Ooyabu, Kohji Numata
  • Publication number: 20110048453
    Abstract: Provided is a chamber cleaning method capable of efficiently removing a CF-based shoulder deposit containing Si and Al deposited on an outer periphery of an ESC. A mixed gas of an O2 gas and a F containing gas is supplied toward an outer periphery 24a of an ESC 24 at a pressure ranging from about 400 mTorr to about 800 mTorr; plasma generated from the mixed gas is irradiated onto the outer periphery 24a of the ESC 24; an O2 single gas as a mask gas is supplied to the top surface of ESC 24 except the outer periphery 24a; and the shoulder deposit 50 adhered to the outer periphery 24a is decomposed and removed while preventing the top surface of ESC 24 except the outer periphery 24a from being exposed to a F radical.
    Type: Application
    Filed: September 1, 2010
    Publication date: March 3, 2011
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Masanobu Honda, Hidetoshi Hanaoka, Taichi Hirano, Takanori Mimura, Manabu Iwata, Taketoshi Okajo
  • Publication number: 20100043974
    Abstract: A plasma processing method is arranged to supply a predetermined process gas into a plasma generation space in which a target substrate is placed, and turn the process gas into plasma. The substrate is subjected to a predetermined plasma process by this plasma. The spatial distribution of density of the plasma and the spatial distribution of density of radicals in the plasma are controlled independently of each other relative to the substrate by a facing portion opposite the substrate to form a predetermined process state over the entire target surface of the substrate.
    Type: Application
    Filed: October 28, 2009
    Publication date: February 25, 2010
    Inventors: Akira Koshiishi, Jun Hirose, Masahiro Ogasawara, Taichi Hirano, Hiromitsu Sasaki, Tetsuo Yoshida, Michishige Saito, Hiroyuki Ishihara, Jun Ooyabu, Kohji Numata
  • Publication number: 20090223926
    Abstract: A plasma processing apparatus, for performing a plasma processing on a substrate to be processed by generating a plasma of the processing gas in an evacuable processing chamber, includes an impedance adjusting mechanism. The impedance adjusting mechanism is provided with a resonance circuit formed to allow a radio frequency current to flow into the first electrode; a variable impedance unit installed on a power feed line to the first electrode; a detector for detecting an apparatus state to be used to search a resonance point of the resonance circuit; and a controller for searching a resonance point of the resonance circuit by detecting a signal of the apparatus state of the detector while varying a value of the variable impedance unit in a state where the plasma is formed and then adjusting the value of the variable impedance unit at the resonance point to a reference value.
    Type: Application
    Filed: May 14, 2009
    Publication date: September 10, 2009
    Applicant: TOKYO ELECTRON LIMITED
    Inventor: Taichi Hirano
  • Publication number: 20090197423
    Abstract: A substrate processing method that can eliminate unevenness in the distribution of plasma. The method is for a substrate processing apparatus that has a processing chamber in which a substrate is housed, a mounting stage that is disposed in the processing chamber and on which the substrate is mounted, and an electrode plate that is disposed in the processing chamber such as to face the mounting stage, the electrode plate being made of silicon and connected to a radio-frequency power source, and carries out plasma processing on the substrate. In the plasma processing, the temperature of the electrode plate is measured, and based on the measured temperature, the temperature of the electrode plate is maintained lower than a critical temperature at which the specific resistance value of the silicon starts changing.
    Type: Application
    Filed: February 2, 2009
    Publication date: August 6, 2009
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Chishio KOSHIMIZU, Taichi HIRANO, Masanobu HONDA, Shinji HIMORI
  • Patent number: 7506610
    Abstract: A plasma processing apparatus includes a process container configured to have a vacuum atmosphere therein. An upper electrode is disposed to face a target substrate placed within the process container. An electric feeder includes a first cylindrical conductive member continuously connected to the upper electrode in an annular direction. The electric feeder is configured to supply a first RF output from a first RF power supply to the upper electrode.
    Type: Grant
    Filed: May 26, 2005
    Date of Patent: March 24, 2009
    Assignee: Tokyo Electron Limited
    Inventors: Akira Koshiishi, Jun Hirose, Masahiro Ogasawara, Taichi Hirano, Hiromitsu Sasaki, Tetsuo Yoshida, Michishige Saito, Hiroyuki Ishihara, Jun Ooyabu, Kohji Numata
  • Patent number: 7494561
    Abstract: A plasma processing apparatus includes a process container configured to have a vacuum atmosphere therein. A first upper electrode is disposed to have a ring shape and to face a target substrate placed within the process container. A second upper electrode is disposed radially inside the first upper electrode and electrically insulated therefrom. A first electric feeder is configured to supply a first RF output from a first RF power supply to the first upper electrode at a first power value. A second electric feeder branches from the first electric feeder and is configured to supply the first RF output from the first RF power supply to the second upper electrode at a second power value smaller than the first power value.
    Type: Grant
    Filed: May 26, 2005
    Date of Patent: February 24, 2009
    Assignee: Tokyo Electron Limited
    Inventors: Akira Koshiishi, Jun Hirose, Masahiro Ogasawara, Taichi Hirano, Hiromitsu Sasaki, Tetsuo Yoshida, Michishige Saito, Hiroyuki Ishihara, Jun Ooyabu, Kohji Numata
  • Publication number: 20060021580
    Abstract: A plasma processing apparatus, for performing a plasma processing on a substrate to be processed by generating a plasma of the processing gas in an evacuable processing chamber, includes an impedance adjusting mechanism. The impedance adjusting mechanism is provided with a resonance circuit formed to allow a radio frequency current to flow into the first electrode; a variable impedance unit installed on a power feed line to the first electrode; a detector for detecting an apparatus state to be used to search a resonance point of the resonance circuit; and a controller for searching a resonance point of the resonance circuit by detecting a signal of the apparatus state of the detector while varying a value of the variable impedance unit in a state where the plasma is formed and then adjusting the value of the variable impedance unit at the resonance point to a reference value.
    Type: Application
    Filed: June 2, 2005
    Publication date: February 2, 2006
    Applicant: TOKYO ELECTRON LIMITED
    Inventor: Taichi Hirano
  • Publication number: 20060000803
    Abstract: A plasma processing method is arranged to supply a predetermined process gas into a plasma generation space in which a target substrate is placed, and turn the process gas into plasma. The substrate is subjected to a predetermined plasma process by this plasma. The spatial distribution of density of the plasma and the spatial distribution of density of radicals in the plasma are controlled independently of each other relative to the substrate by a facing portion opposite the substrate to form a predetermined process state over the entire target surface of the substrate.
    Type: Application
    Filed: May 26, 2005
    Publication date: January 5, 2006
    Inventors: Akira Koshiishi, Jun Hirose, Masahiro Ogasawara, Taichi Hirano, Hiromitsu Sasaki, Tetsuo Yoshida, Michishige Saito, Hiroyuki Ishihara, Jun Ooyabu, Kohji Numata
  • Publication number: 20050269292
    Abstract: A plasma processing apparatus includes a process container configured to have a vacuum atmosphere therein. A first upper electrode is disposed to have a ring shape and to face a target substrate placed within the process container. A second upper electrode is disposed radially inside the first upper electrode and electrically insulated therefrom. A first electric feeder is configured to supply a first RF output from a first RF power supply to the first upper electrode at a first power value. A second electric feeder branches from the first electric feeder and is configured to supply the first RF output from the first RF power supply to the second upper electrode at a second power value smaller than the first power value.
    Type: Application
    Filed: May 26, 2005
    Publication date: December 8, 2005
    Inventors: Akira Koshiishi, Jun Hirose, Masahiro Ogasawara, Taichi Hirano, Hiromitsu Sasaki, Tetsuo Yoshida, Michishige Saito, Hiroyuki Ishihara, Jun Ooyabu, Kohji Numata
  • Publication number: 20050257743
    Abstract: A plasma processing apparatus includes a process container configured to have a vacuum atmosphere therein. An upper electrode is disposed to face a target substrate placed within the process container. An electric feeder includes a first cylindrical conductive member continuously connected to the upper electrode in an annular direction. The electric feeder is configured to supply a first RF output from a first RF power supply to the upper electrode.
    Type: Application
    Filed: May 26, 2005
    Publication date: November 24, 2005
    Inventors: Akira Koshiishi, Jun Hirose, Masahiro Ogasawara, Taichi Hirano, Hiromitsu Sasaki, Tetsuo Yoshida, Michishige Saito, Hiroyuki Ishihara, Jun Ooyabu, Kohji Numata