Patents by Inventor Taichirou Nishikawa
Taichirou Nishikawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10304581Abstract: An aluminum alloy, an aluminum alloy wire, an aluminum alloy stranded wire, a covered electric wire, and a wire harness that are of high toughness and high electrical conductivity, and a method of manufacturing an aluminum alloy wire are provided. The aluminum alloy wire contains not less than 0.005% and not more than 2.2% by mass of Fe, and a remainder including Al and an impurity. It may further contain not less than 0.005% and not more than 1.0% by mass in total of at least one additive element selected from Mg, Si, Cu, Zn, Ni, Mn, Ag, Cr, and Zr. The Al alloy wire has an electrical conductivity of not less than 58% IACS and an elongation of not less than 10%. The Al alloy wire is manufactured through the successive steps of casting, rolling, wiredrawing, and softening treatment.Type: GrantFiled: August 17, 2015Date of Patent: May 28, 2019Assignees: Sumitomo Electric Industries, Ltd., Autonetworks Technologies, Ltd., Sumitomo Wiring Systems, Ltd., Sumitomo Electric Toyama Co., Ltd.Inventors: Misato Kusakari, Yoshihiro Nakai, Taichirou Nishikawa, Yoshiyuki Takaki, Yasuyuki Ootsuka
-
Patent number: 9953736Abstract: An aluminum electric wire includes an annealing conductor that is made up of elemental wires made of an aluminum alloy containing 0.90-1.20 mass % Fe, 0.10-0.25 mass % Mg, 0.01-0.05 mass % Ti, 0.0005-0.0025 mass % B, and the balance being Al and has a tensile strength of 110 MPa or more, a breaking elongation of 15% or more, and an electric conductivity of 58% IACS or more, and an insulating material covering the conductor. The wire is produced by casting an aluminum alloy prepared by rapidly solidifying a molten aluminum alloy having the above composition, producing the wires by subjecting the alloy to plasticity processing, producing the conductor by bunching the wires, subjecting the wires or the conductor to annealing at 250° C. or higher, and then covering the conductor with the insulator.Type: GrantFiled: May 17, 2013Date of Patent: April 24, 2018Assignees: AUTONETWORKS TECHNOLOGIES, LTD., SUMITOMO WIRING SYSTEMS, LTD., SUMITOMO ELECTRIC INDUSTRIES, LTD, SUMITOMO ELECTRIC TOYAMA CO., LTD.Inventors: Yasuyuki Otsuka, Masanobu Yoshimura, Kotaro Maeda, Jun Yoshimoto, Masashi Kimura, Taichirou Nishikawa, Misato Kusakari, Shinichi Kitamura, Hiroaki Takai
-
Publication number: 20150362006Abstract: There is provided a linear object comprising magnesium-alloy having not only excellent heat resistance but also excellent plastic formability. The linear object comprising magnesium-alloy contains, on a mass percent basis, 0.1% to 6% Y, one or more elements selected from the group consisting of 0.1% to 6% Al, 0.01% to 2% Zn, 0.01% to 2% Mn, 0.1% to 6% Sn, 0.01% to 2% Ca, 0.01% to 2% Si, 0.01% to 2% Zr, and 0.01% to 2% Nd, and the balance being Mg and incidental impurities, in which the linear object comprising magnesium-alloy has a creep strain of 1.0% or less, the creep strain being determined by a creep test at a temperature of 150° C. and a stress of 75 MPa for 100 hours.Type: ApplicationFiled: August 26, 2015Publication date: December 17, 2015Inventors: Tetsuya KUWABARA, Taichirou NISHIKAWA, Yoshihiro NAKAI, Toru TANJI, Misato KUSAKARI
-
Publication number: 20150357072Abstract: An aluminum alloy, an aluminum alloy wire, an aluminum alloy stranded wire, a covered electric wire, and a wire harness that are of high toughness and high electrical conductivity, and a method of manufacturing an aluminum alloy wire are provided. The aluminum alloy wire contains not less than 0.005% and not more than 2.2% by mass of Fe, and a remainder including Al and an impurity. It may further contain not less than 0.005% and not more than 1.0% by mass in total of at least one additive element selected from Mg, Si, Cu, Zn, Ni, Mn, Ag, Cr, and Zr. The Al alloy wire has an electrical conductivity of not less than 58% IACS and an elongation of not less than 10%. The Al alloy wire is manufactured through the successive steps of casting, rolling, wiredrawing, and softening treatment.Type: ApplicationFiled: August 17, 2015Publication date: December 10, 2015Inventors: Misato KUSAKARI, Yoshihiro NAKAI, Taichirou NISHIKAWA, Yoshiyuki TAKAKI, Yasuyuki OOTSUKA
-
Patent number: 9147504Abstract: An aluminum alloy, an aluminum alloy wire, an aluminum alloy stranded wire, a covered electric wire, and a wire harness that are of high toughness and high electrical conductivity, and a method of manufacturing an aluminum alloy wire are provided. The aluminum alloy wire contains not less than 0.005% and not more than 2.2% by mass of Fe, and a remainder including Al and an impurity. It may further contain not less than 0.005% and not more than 1.0% by mass in total of at least one additive element selected from Mg, Si, Cu, Zn, Ni, Mn, Ag, Cr, and Zr. The Al alloy wire has an electrical conductivity of not less than 58% IACS and an elongation of not less than 10%. The Al alloy wire is manufactured through the successive steps of casting, rolling, wiredrawing, and softening treatment.Type: GrantFiled: December 19, 2012Date of Patent: September 29, 2015Assignees: SUMITOMO ELECTRIC INDUSTRIES, LTD., AUTONETWORKS TECHNOLOGIES, LTD., SUMITOMO WIRING SYSTEMS, LTD., SUMITOMO ELECTRIC TOYAMA CO., LTD.Inventors: Misato Kusakari, Yoshihiro Nakai, Taichirou Nishikawa, Yoshiyuki Takaki, Yasuyuki Ootsuka
-
Patent number: 8653374Abstract: An aluminum alloy wire, an aluminum alloy stranded wire, a covered electric wire, and a wire harness that are of high toughness and high electrical conductivity, and a method of manufacturing an aluminum alloy wire. The aluminum alloy wire contains not less than 0.2% and not more than 1.0% by mass of Mg, not less than 0.1% and not more than 1.0% by mass of Si, not less than 0.1% and not more than 0.5% by mass of Cu, and a remainder including Al and an impurity, and satisfies 0.8 Mg/Si?2.7 by mass ratio. The Al alloy wire is manufactured through the successive steps of casting, rolling, wiredrawing, and softening treatment.Type: GrantFiled: June 12, 2009Date of Patent: February 18, 2014Assignees: Sumitomo Electric Industries, Ltd., Autonetworks Technologies, Ltd., Sumitomo Wiring Systems, Ltd.Inventors: Misato Kusakari, Yoshihiro Nakai, Taichirou Nishikawa, Yoshiyuki Takaki, Yasuyuki Ootsuka
-
Publication number: 20130255840Abstract: An aluminum electric wire includes an annealing conductor that is made up of elemental wires made of an aluminum alloy containing 0.90-1.20 mass % Fe, 0.10-0.25 mass % Mg, 0.01-0.05 mass % Ti, 0.0005-0.0025 mass % B, and the balance being Al and has a tensile strength of 110 MPa or more, a breaking elongation of 15% or more, and an electric conductivity of 58% IACS or more, and an insulating material covering the conductor. The wire is produced by casting an aluminum alloy prepared by rapidly solidifying a molten aluminum alloy having the above composition, producing the wires by subjecting the alloy to plasticity processing, producing the conductor by bunching the wires, subjecting the wires or the conductor to annealing at 250° C. or higher, and then covering the conductor with the insulator.Type: ApplicationFiled: May 17, 2013Publication date: October 3, 2013Applicants: AUTONETWORKS TECHNOLOGIES, LTD., SUMITOMO ELECTRIC TOYAMA CO., LTD., SUMITOMO ELECTRIC INDUSTRIES, LTD., SUMITOMO WIRING SYSTEMS, LTD.Inventors: Yasuyuki OTSUKA, Masanobu YOSHIMURA, Kotaro MAEDA, Jun YOSHIMOTO, Masashi KIMURA, Taichirou NISHIKAWA, Misato KUSAKARI, Shinichi KITAMURA, Hiroaki TAKAI
-
Publication number: 20130209195Abstract: A linear object is composed of a magnesium alloy including, in percent by mass, 0.1% to 6% of Zn, 0.4% to 4% of Ca, and the balance being Mg and incidental impurities, in which, when a creep test is performed on the linear object under conditions of a temperature of 150° C., a stress of 75 MPa, and a holding time of 100 hours, the linear object has a creep strain of 1.0% or less. Zn and Ca interact with each other to improve heat resistance, and thus it is possible to obtain the linear object having an excellent creep property. By incorporating Zn and Ca, in amounts in specific ranges, into the magnesium alloy, it is also possible to obtain the linear object having excellent plastic workability.Type: ApplicationFiled: October 3, 2011Publication date: August 15, 2013Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.Inventors: Tetsuya Kuwabara, Taichirou Nishikawa, Yoshihiro Nakai, Toru Tanji, Misato Kusakari
-
Patent number: 8476529Abstract: An aluminum electric wire includes an annealing conductor that is made up of elemental wires made of an aluminum alloy containing 0.90-1.20 mass % Fe, 0.10-0.25 mass % Mg, 0.01-0.05 mass % Ti, 0.0005-0.0025 mass % B, and the balance being Al and has a tensile strength of 110 MPa or more, a breaking elongation of 15% or more, and an electric conductivity of 58% IACS or more, and an insulating material covering the conductor. The wire is produced by casting an aluminum alloy prepared by rapidly solidifying a molten aluminum alloy having the above composition, producing the wires by subjecting the alloy to plasticity processing, producing the conductor by bunching the wires, subjecting the wires or the conductor to annealing at 250° C. or higher, and then covering the conductor with the insulator.Type: GrantFiled: October 23, 2008Date of Patent: July 2, 2013Assignees: Autonetworks Technologies, Ltd., Sumitomo Wiring Systems, Ltd., Sumitomo Electric Industries, Ltd., Sumitomo Electric Toyama Co., Ltd.Inventors: Yasuyuki Otsuka, Masanobu Yoshimura, Kotaro Maeda, Jun Yoshimoto, Masashi Kimura, Taichirou Nishikawa, Misato Kusakari, Shinichi Kitamura, Hiroaki Takai
-
Patent number: 8353993Abstract: An aluminum alloy, an aluminum alloy wire, an aluminum alloy stranded wire, a covered electric wire, and a wire harness that are of high toughness and high electrical conductivity, and a method of manufacturing an aluminum alloy wire are provided. The aluminum alloy wire contains not less than 0.005% and not more than 2.2% by mass of Fe, and a remainder including Al and an impurity. It may further contain not less than 0.005% and not more than 1.0% by mass in total of at least one additive element selected from Mg, Si, Cu, Zn, Ni, Mn, Ag, Cr, and Zr. The Al alloy wire has an electrical conductivity of not less than 58% IACS and an elongation of not less than 10%. The Al alloy wire is manufactured through the successive steps of casting, rolling, wiredrawing, and softening treatment.Type: GrantFiled: June 11, 2009Date of Patent: January 15, 2013Assignees: Sumitomo Electric Industries, Ltd., Autonetworks Technologies, Ltd., Sumitomo Wiring Systems, Ltd., Sumitomo Electric Toyama Co., Ltd.Inventors: Misato Kusakari, Yoshihiro Nakai, Taichirou Nishikawa, Yoshiyuki Takaki, Yasuyuki Ootsuka
-
Patent number: 8278555Abstract: A conductor includes elemental wires made from an aluminum alloy containing Si whose content is 0.3-1.2 mass %, Mg whose content makes an Mg/Si weight ratio in a range from 0.8 to 1.8, and a remainder essentially including Al and an unavoidable impurity. The conductor has tensile strength of 240 MPa or more, breaking elongation of 10% or more, impact absorption energy of 8 J/m or more, and electrical conductivity of 40% IACS or more. The production method includes the step of preparing a strand by bunching elemental wires with the above composition, and the step of subjecting the wire to solution treatment, quenching, and aging heat treatment. Solution treatment temperature is 500-580° C., and aging heat treatment temperature is 150-220° C. Heating in solution treatment is high frequency induction heating.Type: GrantFiled: October 30, 2007Date of Patent: October 2, 2012Assignees: Autonetworks Technologies, Ltd., Sumitomo Wiring Systems, Ltd., Sumitomo Electric Industries, Ltd.Inventors: Yasuyuki Otsuka, Yoshihiro Nakai, Taichirou Nishikawa
-
Publication number: 20120070248Abstract: There is provided a linear object comprising magnesium-alloy having not only excellent heat resistance but also excellent plastic formability. The linear object comprising magnesium-alloy contains, on a mass percent basis, 0.1% to 6% Y, one or more elements selected from the group consisting of 0.1% to 6% Al, 0.01% to 2% Zn, 0.01% to 2% Mn, 0.1% to 6% Sn, 0.01% to 2% Ca, 0.01% to 2% Si, 0.01% to 2% Zr, and 0.01% to 2% Nd, and the balance being Mg and incidental impurities, in which the linear object comprising magnesium-alloy has a creep strain of 1.0% or less, the creep strain being determined by a creep test at a temperature of 150° C. and a stress of 75 MPa for 100 hours.Type: ApplicationFiled: May 18, 2010Publication date: March 22, 2012Applicant: Sumitomo Electric Industries, Ltd.Inventors: Tetsuya Kuwabara, Taichirou Nishikawa, Yoshihiro Nakai, Toru Tanji, Misato Kusakari
-
Publication number: 20120061122Abstract: A conductor for electric wire that has excellent strength and excellent weldability, and an electric wire for automobile including the conductor. The conductor for electric wire contains a copper alloy having an oxygen content of 50 mass parts per million or less, the copper alloy containing 0.1 to 0.6 mass % Mg, and a balance of copper and an unavoidable impurity. It is preferable that the copper alloy further contains one or a plurality of material elements selected from the group consisting of Ag, In, Sr and Ca, the selected one or plurality of material elements being 0.0005 to 0.3 mass % in total. It is preferable that the copper alloy further contains 0.2 to 0.75 mass % Sn.Type: ApplicationFiled: June 8, 2010Publication date: March 15, 2012Applicants: AUTONETWORKS TECHNOLOGIES, LTD., SUMITOMO ELECTRIC INDUSTRIES, LTD., SUMITOMO WIRING SYSTEMS, LTD.Inventors: Hiroyuki Kodama, Yasuyuki Otsuka, Misato Kusakari, Taichirou Nishikawa
-
Publication number: 20110140517Abstract: An aluminum alloy, an aluminum alloy wire, an aluminum alloy stranded wire, a covered electric wire, and a wire harness that are of high toughness and high electrical conductivity, and a method of manufacturing an aluminum alloy wire are provided. The aluminum alloy wire contains not less than 0.005% and not more than 2.2% by mass of Fe, and a remainder including Al and an impurity. It may further contain not less than 0.005% and not more than 1.0% by mass in total of at least one additive element selected from Mg, Si, Cu, Zn, Ni, Mn, Ag, Cr, and Zr. The Al alloy wire has an electrical conductivity of not less than 58% IACS and an elongation of not less than 10%. The Al alloy wire is manufactured through the successive steps of casting, rolling, wiredrawing, and softening treatment.Type: ApplicationFiled: June 11, 2009Publication date: June 16, 2011Inventors: Misato Kusakari, Yoshihiro Nakai, Taichirou Nishikawa, Yoshiyuki Takaki, Yasuyuki Ootsuka
-
Publication number: 20110132659Abstract: Provided are an aluminum alloy having high toughness and high electric conductivity, an aluminum alloy wire, an aluminum alloy stranded wire, a covered electric wire, a wire harness, and a process for production of an aluminum alloy wire. The aluminum alloy wire contains by mass 0.2 to 1.0% of Mg, 0.1 to 1.0% of Si, and 0.1 to 0.5% of Cu with the balance being Al and impurities and satisfies the relationship: 0.8?Mg/Si mass ratio?2.7. The Al alloy wire exhibits an electric conductivity of 58% IACS or above and an elongation of 10% or above. The Al alloy wire is produced via successive steps of casting, rolling, wire drawing, and softening treatment. Since the Al alloy wire has been subjected to softening treatment, the wire is excellent in toughnesses such as elongation and impact resistance, so that when used in a wire harness, the wire is inhibited from being broken in the neighborhood of a terminal in mounting the wire harness.Type: ApplicationFiled: June 12, 2009Publication date: June 9, 2011Inventors: Misato Kusakari, Yoshihiro Nakai, Taichirou Nishikawa, Yoshiyuki Takaki, Yasuyuki Ootsuka
-
Publication number: 20110036614Abstract: An aluminum electric wire includes an annealing conductor that is made up of elemental wires made of an aluminum alloy containing 0.90-1.20 mass % Fe, 0.10-0.25 mass % Mg, 0.01-0.05 mass % Ti, 0.0005-0.0025 mass % B, and the balance being Al and has a tensile strength of 110 MPa or more, a breaking elongation of 15% or more, and an electric conductivity of 58% IACS or more, and an insulating material covering the conductor. The wire is produced by casting an aluminum alloy prepared by rapidly solidifying a molten aluminum alloy having the above composition, producing the wires by subjecting the alloy to plasticity processing, producing the conductor by bunching the wires, subjecting the wires or the conductor to annealing at 250° C. or higher, and then covering the conductor with the insulator.Type: ApplicationFiled: October 23, 2008Publication date: February 17, 2011Applicants: AUTONETWORKS TECHNOLOGIES, LTD., SUMITOMO WIRING SYSTEMS, LTD., SUMITOMO ELECTRIC INDUSTRIES, LTD., SUMITOMO ELECTRIC TOYAMA CO., LTD.Inventors: Yasuyuki Otsuka, Masanobu Yoshimura, Koutarou Maeda, Jun Yoshimoto, Masashi Kimura, Taichirou Nishikawa, Misato Kusakari, Shinichi Kitamura, Hiroaki Takai
-
Publication number: 20100071933Abstract: A conductor excellent in tensile strength, breaking elongation, impact resistance, electrical conductivity, and fatigue resistance, and a production method thereof. The conductor includes elemental wires made from an aluminum alloy containing Si whose content is 0.3-1.2 mass %, Mg whose content makes an Mg/Si weight ratio in a range from 0.8 to 1.8, and a remainder essentially including Al and an unavoidable impurity. The conductor has tensile strength of 240 MPa or more, breaking elongation of 10% or more, impact absorption energy of 8 J/m or more, and electrical conductivity of 40% IACS or more. The production method includes the step of preparing a strand by bunching elemental wires with the above composition, and the step of subjecting the wire to solution treatment, quenching, and aging heat treatment. Solution treatment temperature is 500-580° C., and aging heat treatment temperature is 150-220° C. Heating in solution treatment is high frequency induction heating.Type: ApplicationFiled: October 30, 2007Publication date: March 25, 2010Applicants: AUTONETWORKS TECHNOLOGIES, LTD., SUMITOMO WIRING SYSTEMS, LTD., SUMITOMO ELECTRIC INDUSTRIES, LTDInventors: Yasuyuki Otsuka, Yoshihiro Nakai, Taichirou Nishikawa