Patents by Inventor Taiichiro Suda

Taiichiro Suda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8264251
    Abstract: A solar cell characteristic measuring device measures the output characteristics of a solar cell while avoiding junction capacitance. The device provides a solar cell load circuit by connecting the solar cell with an electronic load device setting a load current or voltage variably, and a measurement circuit connecting voltage and current detectors with the load. An operation point control element divides the magnitude of the load, taken from the solar cell, of the electronic load device into a plurality ranging from states of opening to short-circuiting, while driving the load device in the load circuit periodically and intermittently, changing the load magnitude stepwise and controlling the operation point of the solar cell, and a processing element reading and processing the detected values of the voltage and current detectors at each drive period of the electronic load device and for the period of the stable output voltage of the solar cell.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: September 11, 2012
    Assignee: Tahara Electric Co., Ltd.
    Inventors: Yoshinori Mizutani, Taiichiro Suda
  • Publication number: 20110316578
    Abstract: A solar cell characteristic measuring device measures the output characteristics of a solar cell while avoiding junction capacitance. The device provides a solar cell load circuit by connecting the solar cell with an electronic load device setting a load current or voltage variably, and a measurement circuit connecting voltage and current detectors with the load. An operation point control element divides the magnitude of the load, taken from the solar cell, of the electronic load device into a plurality ranging from states of opening to short-circuiting, while driving the load device in the load circuit periodically and intermittently, changing the load magnitude stepwise and controlling the operation point of the solar cell, and a processing element reading and processing the detected values of the voltage and current detectors at each drive period of the electronic load device and for the period of the stable output voltage of the solar cell.
    Type: Application
    Filed: August 27, 2009
    Publication date: December 29, 2011
    Applicant: TAHARA ELECTRIC CO., LTD.
    Inventors: Yoshinori Mizutani, Taiichiro Suda
  • Patent number: 6274108
    Abstract: A process is provided for removing carbon dioxide out of combustion exhaust gas by scrubbing the exhaust gas with an aqueous solution of monoethanolamine in a scrubber, and regenerating the carbon dioxide-loaded aqueous solution of monoethanolamine in a regenerator. The process is provided with means for replenishing the aqueous solution of monoethanolamine with a stock, aqueous solution containing from about 70% to about 75% by weight of monoethanolamine. By providing a stock, aqueous solution containing from about 70% to about 75% by weight of monoethanolamine, which is injected into the carbon dioxide-loaded aqueous solution of monoethanolamine being transferred from the scrubber to the regenerator, the entire carbon dioxide recovery system is free from flammables, rendering fire-fighting precautions unnecessary.
    Type: Grant
    Filed: February 28, 1997
    Date of Patent: August 14, 2001
    Assignees: The Kansai Electric Power Co., Ltd., Mitsubishi Jukogyo Kabushiki Kaisha
    Inventors: Masumi Fujii, Yoshitsugu Hotta, Taiichiro Suda, Kenji Kobayashi, Kunihiko Yoshida, Shigeru Shimojo, Mutsunori Karasaki, Masaki Iijima, Toru Seto, Shigeaki Mitsuoka
  • Publication number: 20010002247
    Abstract: After hydrogenation and desulfurization treatment of raw fuel in the desulfurization unit 1, the product is separated in the acidic gas separator 2 into fuel and a hydrogen sulfide-containing gas, and the hydrogen sulfide-containing gas is subjected to combustion together with air in the catalyst converter 3 thereby converting the hydrogen sulfide completely into sulfur dioxide to give a sulfur dioxide-containing gas, and this sulfur dioxide-containing gas is reacted with limestone powder and air in water in the oxidation and neutralization reactor 4, and the resulting slurry is dehydrated in the gypsum slurry solid/liquid separator 5 and then dried in the gypsum heater 6.
    Type: Application
    Filed: August 21, 1998
    Publication date: May 31, 2001
    Applicant: Taiichiro Suda
    Inventors: TAIICHIRO SUDA, NAGATOSHI FUJII, MASAMI KAWASAKI, YOSHIKO MORIGUCHI, MASAKI IIJIMA, TOSHIKUNI SERA
  • Patent number: 5798087
    Abstract: After hydrogenation and desulfurization treatment of raw fuel in the desulfurization unit 1, the product is separated in the acidic gas separator 2 into fuel and a hydrogen sulfide-containing gas, and the hydrogen sulfide-containing gas is subjected to combustion together with air in the catalyst converter 3 thereby converting the hydrogen sulfide completely into sulfur dioxide to give a sulfur dioxide-containing gas, and this sulfur dioxide-containing gas is reacted with limestone powder and air in water in the oxidation and neutralization reactor 4, and the resulting slurry is dehydrated in the gypsum slurry solid/liquid separator 5 and then dried in the gypsum heater 6.
    Type: Grant
    Filed: December 10, 1996
    Date of Patent: August 25, 1998
    Assignees: Kansai Electric Power Co., Inc., Mitsubishi Jukogyo Kabushiki Kaisha
    Inventors: Taiichiro Suda, Nagatoshi Fujii, Masami Kawasaki, Yoshiko Moriguchi, Masaki Iijima, Toshikuni Sera
  • Patent number: 5700437
    Abstract: A method for removing carbon dioxide from a combustion exhaust gas under atmospheric pressure by the use of a mixed solution of a specific amine compound X having an alcoholic hydroxyl group and a primary amino group which is bonded to a tertiary carbon atom having two unsubstituted alkyl groups and another amine compound Y being a diaminotoluene (DAT) selected from the group consisting of 2,3-DAT, 2,4-DAT, 2,5-DAT, 2,6-DAT, 3,4-DAT and 3,5-DAT.
    Type: Grant
    Filed: June 10, 1996
    Date of Patent: December 23, 1997
    Assignees: The Kansai Electric Power Co., Inc., Mitsubishi Jukogyo Kabushiki Kaisha
    Inventors: Masumi Fujii, Taiichiro Suda, Yoshitsugu Hotta, Koichi Kitamura, Yukihiro Jinno, Tomio Mimura, Shigeru Shimojo, Masaki Iijima, Shigeaki Mitsuoka
  • Patent number: 5603377
    Abstract: A heat pipe includes: a pipe barrel; and a large number of fins disposed on the peripheral surface of the pipe barrel at least on either a heat collecting section side or a radiating section side, each of the fins is attached to the pipe barrel on a plane perpendicular to the axis of the pipe barrel, and each of the fins is composed of a metal plate and net-like material adhered to both surfaces of the metal plate.A heat exchanger of gas-liquid contacting plate type includes: a plurality of heat transfer plates, disposed vertically at certain intervals, defining air flow passages therebetween which allow air to rise, and each of the plates has a heat medium flowing passage thereinside for allowing a heat medium to flow therethrough while the side surfaces of each of the heat transfer plates, which define the air flow passages, are adhered with nets for allowing a liquid to flow downward along the nets and plates.
    Type: Grant
    Filed: June 21, 1996
    Date of Patent: February 18, 1997
    Assignees: The Kansai Electric Power Co., Inc., Mitsubishi Jukogyo Kabushiki Kaisha
    Inventors: Masumi Fujii, Taiichiro Suda, Yoshitsugu Hotta, Koichi Kitamura, Yukihiro Jinno, Tomio Mimura, Shigeru Shimojo, Masaki Iijima, Shigeaki Mitsuoka
  • Patent number: 5536454
    Abstract: An apparatus for gas-liquid contact in which tubular structure fillers having a cross section of any of various shapes and having straight tubular portions are arranged in a substantially vertical direction in the form of plural steps so that the gas-liquid contact surfaces of the fillers may be parallel with the flow of the gas,the apparatus for gas-liquid contact being characterized in that the gas-liquid contact surfaces comprise rough surface portions, porous surface portions, meshes or plates to which meshes adhere, or there is interposed, between the plural steps of the fillers, a dispersing plate for receiving the liquid downward coming from the site above the fillers, dispersing the liquid, and allowing the liquid to downward flow.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: July 16, 1996
    Assignees: Mitsubishi Jukogyo Kabushiki Kaisha, Kansai Electric Power Co., Inc.
    Inventors: Masumi Fujii, Yoshitsugu Hotta, Taiichiro Suda, Kouichi Kitamura, Yukihiro Jinno, Tomio Mimura, Shigeru Shimojo, Masami Kawasaki, Kunihiko Yoshida, Mutsunori Karasaki, Masaki Iijima, Shigeaki Mitsuoka
  • Patent number: 5378442
    Abstract: A method for recovering carbon dioxide by absorbing carbon dioxide present in a combustion exhaust gas using an aqueous alkanolamine solution, comprising the step of bringing a combustion exhaust gas from which carbon dioxide has been absorbed and removed into contact with water containing carbon dioxide. A method for treating a combustion exhaust gas for denitration using ammonia as a reducing agent and for removal of carbon dioxide by absorption with an aqueous alkanolamine solution, which method comprising the steps of recovering ammonia present in the combustion exhaust gas after the carbon dioxide removal, and using the recovered ammonia as a reducing agent for the denitration. A method for removing CO.sub.2 from a combustion exhaust gas comprising the step of bringing the combustion exhaust gas into contact under atmospheric pressure with an aqueous monoethanolamine solution having a concentration of 35% by weight or more.
    Type: Grant
    Filed: January 13, 1993
    Date of Patent: January 3, 1995
    Assignees: The Kansai Electric Power Co., Inc., Mitsubishi Jukogyo Kabushiki Kaisha
    Inventors: Masumi Fujii, Taiichiro Suda, Yoshitsugu Hotta, Kenji Kobayashi, Kunihiko Yoshida, Shigeru Shimojo, Koichi Kitamura, Masami Kawasaki, Mutsunori Karasaki, Masaki Iijima, Touru Seto, Shigeaki Mitsuoka
  • Patent number: 5344627
    Abstract: A process for removing carbon dioxide (CO.sub.2) from a combustion exhaust gas of a boiler (1) which generates steam for driving high (3), intermediate (7), and low (8) pressure turbines. The process comprises the steps of removing CO.sub.2 in the combustion exhaust gas by absorption with a CO.sub.2 -absorbing liquid (19), liquefying the removed CO.sub.2 (28) by compression (42) and cooling (48), storing (52) the CO.sub.2, and regenerating the CO.sub.2 -absorbing liquid by a CO.sub.2 -absorbing liquid regeneration column (24) equipped with a reboiler (30). In the process, a part (40) of steam discharged from the high pressure turbine (3) is used to drive turbines (41, 43) for compressors (42, 44) that compress the CO.sub.2, and a refrigerant for cooling the CO.sub.2, and steam (45) discharged from the compressor turbines is supplied as a heating source to the reboiler (30) for the regeneration of the CO.sub.2 -absorbing liquid.
    Type: Grant
    Filed: January 15, 1993
    Date of Patent: September 6, 1994
    Assignees: The Kansai Electric Power Co., Inc., Mitsubishi Jukogyo Kabushiki Kaisha
    Inventors: Masumi Fujii, Taiichiro Suda, Yoshitsugu Hotta, Kenji Kobayashi, Kunihiko Yoshida, Shigeru Shimojo, Mutsunori Karasaki, Masaki Iijima, Touru Seto, Shigeaki Mitsuoka
  • Patent number: 5339633
    Abstract: An electric generating power plant and a method of operation thereof wherein the boiler (1) produces steam to a turbine driven-generator (2), carbon dioxide from combustion exhaust gas emitted from the boiler is simultaneously absorbed in an absorbing solution in an absorber (7), the absorbing solution with the absorbed carbon dioxide is passed through a regenerator (10) where the carbon dioxide is stripped from the absorbing solution, the regenerated absorbing solution is returned to the absorber (7), and steam from either the boiler (1) or turbine of the turbine-driven generator (2) is supplied to a reboiler (13) to provide heat for operation of the regenerator (10). During periods of high demand for electric power steam extraction from the boiler or turbine is discontinued, operation of the regenerator (10) is discontinued and the absorbing solution from the absorber (7) is stored in a first storage unit (15).
    Type: Grant
    Filed: October 7, 1992
    Date of Patent: August 23, 1994
    Assignees: The Kansai Electric Power Co., Ltd., Mitsubishi Jukogyo Kabushiki Kaisha
    Inventors: Masumi Fujii, Yoshitsugu Hotta, Taiichiro Suda, Kenji Kobayashi, Kunihiko Yoshida, Shigeru Shimojo, Mutsunori Karasaki, Masaki Iijima, Toru Seto, Shigeaki Mitsuoka
  • Patent number: 5318758
    Abstract: An apparatus and a process for removing CO.sub.2 from a combustion exhaust gas, by effecting counterflow contact of aqueous alkanolamine solution with the combustion exhaust gas to absorb CO.sub.2 from the gas in the alkanolamine solution and effecting a further contact of the gas with either, condensate water formed by causing condensation of the gas after removal of CO.sub.2, or condensate water formed by causing condensation of the combustion exhaust gas directly after combustion of the fuel. The apparatus includes a tower (1), a first contact section (2) in the tower through which the exhaust gas flows upwardly in counterflow contact with the aqueous alkanolamine solution dispersed by a nozzle device (7) downstream of the first contact section (2), a second contact section (3) in the tower (1) downstream of the nozzle device (7) for effecting counterflow contact of reflux water from a spent absorbent liquor regenerating tower (28) with the gas after removal of CO.sub.2.
    Type: Grant
    Filed: March 9, 1992
    Date of Patent: June 7, 1994
    Assignees: Mitsubishi Jukogyo Kabushiki Kaisha, Kansai Electric Power Co., Inc.
    Inventors: Masumi Fujii, Yoshitsugu Hotta, Taiichiro Suda, Kenji Kobayashi, Kunihiko Yoshida, Shigeru Shimojo, Mutsunori Karasaki, Masaki Iijima, Fumio Tomikawa, Touro Seto, Shigeaki Mitsuoka