Patents by Inventor Taijiro Matsui

Taijiro Matsui has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9719148
    Abstract: The furnace of the present invention includes a body of a furnace having a cylindrical shape; a steel shell which is arranged at an inside surface of the furnace; and a lining refractory which is arranged at an inside of the steel shell and includes a plurality of refractory blocks, wherein: each of the refractory blocks includes a hot-face end surface which has a hexagonal shape exposed to a middle of the furnace, and a cold-face end surface which has a hexagonal shape larger than the hot-face end surface, the cold-face end surface being arranged at an outer periphery side of the furnace; the refractory blocks are arranged such that each position of the hot-face end surface is positioned along the radial direction of the furnace at a predetermined reference position; and the refractory blocks are arrayed along the circumferential direction of an inside surface of the steel shell, thereby being stacked in a honeycomb manner.
    Type: Grant
    Filed: May 19, 2010
    Date of Patent: August 1, 2017
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Hatsuo Taira, Taijiro Matsui, Takayuki Uchida, Shingo Umeda, Hiroshi Imagawa, Shintaro Kobayashi
  • Patent number: 8889062
    Abstract: A carbonaceous refractory and a method of production is provided, which prevents a drop in the molten pig iron corrosion resistance, molten pig iron penetration resistance, and other properties of carbonaceous refractories required for blast furnace bottom refractories. The mechanical strength of the refractories is raised so as to suppress cracking due to thermal stress. The carbonaceous refractory comprises a carbonaceous material comprising one or more of calcined anthracite, calcined coke, natural graphite, or artificial graphite in 60 to 85 mass %, a refractory metal oxide in 5 to 15 mass %, metal silicon in 4 to 15 mass %, and carbon black in 2 to 10 mass %. An organic binder is added to refractory materials, which are kneaded, molded and fired in a nonoxidizing atmosphere.
    Type: Grant
    Filed: February 17, 2010
    Date of Patent: November 18, 2014
    Assignees: Nippon Steel & Sumitomo Metal Corporation, Nippon Electrode Co., Ltd.
    Inventors: Hiroyuki Inoue, Michio Nitta, Taijiro Matsui, Tsutomu Wakasa, Yoshiyuki Yamagami, Toru Mochida
  • Patent number: 8360136
    Abstract: In a continuous casting method, the outside surface of a continuous casting nozzle which supplies molten metal into a mold while immersed in the molten metal in the mold, is heated to 1000° C. or higher by a nozzle heating device comprising an external heater which performs radiant heating, while the molten metal passes through the continuous casting nozzle.
    Type: Grant
    Filed: December 28, 2009
    Date of Patent: January 29, 2013
    Assignee: Nippon Steel Corporation
    Inventors: Taijiro Matsui, Shinichi Fukunaga, Hiroshi Imawaka, Kohichiroh Kataoka
  • Publication number: 20120064473
    Abstract: The furnace of the present invention includes a body of a furnace having a cylindrical shape; a steel shell which is arranged at an inside surface of the furnace; and a lining refractory which is arranged at an inside of the steel shell and includes a plurality of refractory blocks, wherein: each of the refractory blocks includes a hot-face end surface which has a hexagonal shape exposed to a middle of the furnace, and a cold-face end surface which has a hexagonal shape larger than the hot-face end surface, the cold-face end surface being arranged at an outer periphery side of the furnace; the refractory blocks are arranged such that each position of the hot-face end surface is positioned along the radial direction of the furnace at a predetermined reference position; and the refractory blocks are arrayed along the circumferential direction of an inside surface of the steel shell, thereby being stacked in a honeycomb manner.
    Type: Application
    Filed: May 19, 2010
    Publication date: March 15, 2012
    Applicant: NIPPON STEEL CORPORATION
    Inventors: Hatsuo Taira, Taijiro Matsui, Takayuki Uchida, Shingo Umeda, Hiroshi Imagawa, Shintaro Kobayashi
  • Patent number: 8076255
    Abstract: To provide a long-life refractory capable of maintaining durability under severe conditions. The castable refractory comprises a mixture containing at least one of 2 to 10 mass % of silicon carbide and 3 to 10 mass % of chamotte, as an auxiliary raw material, and a binder material, with the remaining balance being one or more main raw materials selected from corundum, mullite, bauxite, chamotte, talc and silica, and is used in an environment exposed to an alkali component-containing hot gas atmosphere. In an alkali component-containing gas atmosphere at a high temperature (750° C. or more), silicon carbide and/or chamotte are vitrified to a thickness of 1 mm or less in the surface layer of the refractory to prevent the alkali component-containing gas from intruding inside of the refractory.
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: December 13, 2011
    Assignee: Nippon Steel Corporation
    Inventors: Satoru Ito, Hitoshi Nakamura, Taijiro Matsui, Michio Nitta
  • Publication number: 20110298166
    Abstract: The present invention provides a carbonaceous refractory, and a method of production of the same, which prevents a drop in the molten pig iron corrosion resistance, molten pig iron penetration resistance, and other properties of carbonaceous refractories required for blast furnace bottom refractories and, further, raises the mechanical strength of the refractories so as to suppress cracking due to thermal stress, that is, a carbonaceous refractory characterized by comprising a carbonaceous material comprised of one or more of calcined anthracite, calcined coke, natural graphite, or artificial graphite in 60 to 85 mass %, a refractory metal oxide in 5 to 15 mass %, metal silicon in 4 to 15 mass %, and carbon black in 2 to 10 mass % and by being obtained by adding an organic binder to refractory materials made a total 100 mass %, kneading the materials, then molding them and firing them in a nonoxidizing atmosphere.
    Type: Application
    Filed: February 17, 2010
    Publication date: December 8, 2011
    Inventors: Hiroyuki Inoue, Michio Nitta, Taijiro Matsui, Tsutomu Wakasa, Yoshiyuki Yamagami, Toru Mochida
  • Publication number: 20110253337
    Abstract: In a continuous casting method, the outside surface of a continuous casting nozzle which supplies molten metal into a mold while immersed in the molten metal in the mold, is heated to 1000° C. or higher by a nozzle heating device comprising an external heater which performs radiant heating, while the molten metal passes through the continuous casting nozzle.
    Type: Application
    Filed: December 28, 2009
    Publication date: October 20, 2011
    Inventors: Taijiro Matsui, Shinichi Fukunaga, Hiroshi Imawaka, Kohichiroh Kataoka
  • Publication number: 20090130618
    Abstract: To provide a long-life refractory capable of maintaining durability under severe conditions. The castable refractory comprises a mixture containing at least one of 2 to 10 mass % of silicon carbide and 3 to 10 mass % of chamotte, as an auxiliary raw material, and a binder material, with the remaining balance being one or more main raw materials selected from corundum, mullite, bauxite, chamotte, talc and silica, and is used in an environment exposed to an alkali component-containing hot gas atmosphere. In an alkali component-containing gas atmosphere at a high temperature (750° C. or more), silicon carbide and/or chamotte are vitrified to a thickness of 1 mm or less in the surface layer of the refractory to prevent the alkali component-containing gas from intruding inside of the refractory.
    Type: Application
    Filed: October 27, 2006
    Publication date: May 21, 2009
    Applicant: NIPPON STEEL CORPORATION
    Inventors: Satoru Ito, Hitoshi Nakamura, Taijiro Matsui, Michio Nitta
  • Patent number: 6897169
    Abstract: A fire-resistant heat insulating material excellent in resistance to heat, resistance to slag, resistance to molten iron, resistance to wear, and resistance to mechanical impulse is provided. A highly endurable heat insulating material characterized by being provided on the surface of a layer of inorganic heat insulating fibers through the medium of a coating film of surface hardening material with a flame sprayed film of a fire-resistant ceramic substance.
    Type: Grant
    Filed: May 3, 2001
    Date of Patent: May 24, 2005
    Assignee: Nippon Steel Corporation
    Inventors: Taijiro Matsui, Hiroshi Imagawa, Tsuneo Kayama, Shinji Aso
  • Publication number: 20030017299
    Abstract: A fire-resistant heat insulating material excellent in resistance to heat, resistance to slag, resistance to molten iron, resistance to wear, and resistance to mechanical impulse is provided. A highly endurable heat insulating material characterized by being provided on the surface of a layer of inorganic heat insulating fibers through the medium of a coating film of surface hardening material with a flame sprayed film of a fire-resistant ceramic substance.
    Type: Application
    Filed: November 2, 2001
    Publication date: January 23, 2003
    Inventors: Taijiro Matsui, Hiroshi Imagawa, Tsuneo Kayama, Shinji Aso
  • Publication number: 20020168554
    Abstract: The present invention provides a refractory and heat insulating material excellent in heat resistance, slag resistance, molten steel resistance, wear resistance, and mechanical impact resistance, and relates to a highly durable heat insulating material characterized by having a thermally sprayed film of refractory ceramic on a surface of a formed body of an inorganic refractory fiber which surface is covered with a cloth material or was covered with the cloth material until it burned out by flame fusion coating of refractory ceramic powder material during the fabricating process of the heat insulating material, with an application film of a surface hardening material acting as an intermediary layer between the thermally sprayed film and the fiber body.
    Type: Application
    Filed: January 18, 2002
    Publication date: November 14, 2002
    Inventors: Taijiro Matsui, Hiroshi Imagawa, Tsuneo Kayama, Shinji Aso, Masataka Matsuo, Kazuhiro Honda