Patents by Inventor Tai-Min Chang

Tai-Min Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11990383
    Abstract: A conductive structure, includes: a plurality of conductive layers; a plurality of conductive pillars being formed on the plurality of conductive layers, respectively; and a molding compound laterally coating the plurality of conductive pillars. Each of the plurality of conductive pillars is a taper-shaped conductive pillar, and is tapered from the conductive layers.
    Type: Grant
    Filed: November 2, 2022
    Date of Patent: May 21, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hung-Jui Kuo, Hui-Jung Tsai, Tai-Min Chang, Chia-Wei Wang
  • Publication number: 20230411496
    Abstract: A semiconductor structure and method of forming a semiconductor structure are provided. In some embodiments, the method includes forming a gate structure over a substrate. An epitaxial source/drain region is formed adjacent to the gate structure. A dielectric layer is formed over the epitaxial source/drain region. An opening is formed, the opening extending through the dielectric layer and exposing the epitaxial source/drain region. Sidewalls of the opening are defined by the dielectric layer and a bottom of the opening is defined by the epitaxial source/drain region. A silicide layer is formed on the epitaxial source/drain region. A metal capping layer including tungsten, molybdenum, or a combination thereof is selectively formed on the silicide layer by a first deposition process. The opening is filled with a first conductive material in a bottom-up manner from the metal capping layer by a second deposition process different from the first deposition process.
    Type: Application
    Filed: May 23, 2022
    Publication date: December 21, 2023
    Inventors: Kan-Ju LIN, Chien CHANG, Chih-Shiun CHOU, Tai Min CHANG, Yi-Ning TAI, Hong-Mao LEE, Yan-Ming TSAI, Wei-Yip LOH, Harry CHIEN, Chih-Wei CHANG, Ming-Hsing TSAI, Lin-Yu HUANG
  • Patent number: 11848233
    Abstract: A method includes the following steps. A seed layer is formed over a structure having at least one semiconductor die. A first patterned photoresist layer is formed over the seed layer, wherein the first patterned photoresist layer includes a first opening exposing a portion of the seed layer. A metallic wiring is formed in the first opening and on the exposed portion of the seed layer. A second patterned photoresist layer is formed on the first patterned photoresist layer and covers the metallic wiring, wherein the second patterned photoresist layer includes a second opening exposing a portion of the metallic wiring. A conductive via is formed in the second opening and on the exposed portion of the metallic wiring. The first patterned photoresist layer and the second patterned photoresist layer are removed. The metallic wiring and the conductive via are laterally wrapped around with an encapsulant.
    Type: Grant
    Filed: March 27, 2022
    Date of Patent: December 19, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Po-Yuan Teng, Bor-Rung Su, De-Yuan Lu, Hao-Yi Tsai, Tin-Hao Kuo, Tzung-Hui Lee, Tai-Min Chang
  • Publication number: 20230384684
    Abstract: A method for removing a resist layer including the following steps is provided. A patterned resist layer on a material layer is formed. A stripping solution is applied to the patterned resist layer to dissolve the patterned resist layer without dissolving the material layer, wherein the stripping solution comprises a non-dimethyl sulfoxide solvent and an alkaline compound, the non-dimethyl sulfoxide solvent comprises an aprotic solvent and a protic solvent.
    Type: Application
    Filed: July 25, 2023
    Publication date: November 30, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hung-Jui Kuo, Hui-Jung Tsai, Tai-Min Chang
  • Patent number: 11823969
    Abstract: A package includes a device die, an encapsulant encapsulating the device die therein, a first plurality of through-vias penetrating through the encapsulant, a second plurality of through-vias penetrating through the encapsulant, and redistribution lines over and electrically coupling to the first plurality of through-vias. The first plurality of through-vias include an array. The second plurality of through-vias are outside of the first array, and the second plurality of through-vias are larger than the first plurality of through-vias.
    Type: Grant
    Filed: June 30, 2022
    Date of Patent: November 21, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hung-Jui Kuo, Tai-Min Chang, Hui-Jung Tsai, De-Yuan Lu, Ming-Tan Lee
  • Publication number: 20230369153
    Abstract: A package includes a device die, an encapsulant encapsulating the device die therein, a first plurality of through-vias penetrating through the encapsulant, a second plurality of through-vias penetrating through the encapsulant, and redistribution lines over and electrically coupling to the first plurality of through-vias. The first plurality of through-vias include an array. The second plurality of through-vias are outside of the first array, and the second plurality of through-vias are larger than the first plurality of through-vias.
    Type: Application
    Filed: July 28, 2023
    Publication date: November 16, 2023
    Inventors: Hung-Jui Kuo, Tai-Min Chang, Hui-Jung Tsai, De-Yuan Lu, Ming-Tan Lee
  • Publication number: 20230352442
    Abstract: A method includes encapsulating a device in an encapsulating material, planarizing the encapsulating material and the device, and forming a conductive feature over the encapsulating material and the device. The formation of the conductive feature includes depositing a first conductive material to from a first seed layer, depositing a second conductive material different from the first conductive material over the first seed layer to form a second seed layer, plating a metal region over the second seed layer, performing a first etching on the second seed layer, performing a second etching on the first seed layer, and after the first seed layer is etched, performing a third etching on the second seed layer and the metal region.
    Type: Application
    Filed: July 10, 2023
    Publication date: November 2, 2023
    Inventors: Hui-Jung Tsai, Yun Chen Hsieh, Jyun-Siang Peng, Tai Min Chang, Yi-Yang Lei, Hung-Jui Kuo, Chen-Hua Yu
  • Patent number: 11789366
    Abstract: A method for removing a resist layer including the following steps is provided. A patterned resist layer on a material layer is formed. A stripping solution is applied to the patterned resist layer to dissolve the patterned resist layer without dissolving the material layer, wherein the stripping solution comprises a non-dimethyl sulfoxide solvent and an alkaline compound, the non-dimethyl sulfoxide solvent comprises an aprotic solvent and a protic solvent.
    Type: Grant
    Filed: June 1, 2022
    Date of Patent: October 17, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hung-Jui Kuo, Hui-Jung Tsai, Tai-Min Chang
  • Patent number: 11742317
    Abstract: A method includes encapsulating a device in an encapsulating material, planarizing the encapsulating material and the device, and forming a conductive feature over the encapsulating material and the device. The formation of the conductive feature includes depositing a first conductive material to from a first seed layer, depositing a second conductive material different from the first conductive material over the first seed layer to form a second seed layer, plating a metal region over the second seed layer, performing a first etching on the second seed layer, performing a second etching on the first seed layer, and after the first seed layer is etched, performing a third etching on the second seed layer and the metal region.
    Type: Grant
    Filed: October 17, 2019
    Date of Patent: August 29, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hui-Jung Tsai, Yun Chen Hsieh, Jyun-Siang Peng, Tai-Min Chang, Yi-Yang Lei, Hung-Jui Kuo, Chen-Hua Yu
  • Publication number: 20230137108
    Abstract: Techniques described herein include performing a first anneal operation on a first portion of the interconnect, filling the remaining portion of the interconnect, and then performing a second anneal operation on the interconnect. The two-step anneal techniques described herein enable the removal of defects in an interconnect structure, particularly for high aspect ratio interconnect structures. Accordingly, the two-step anneal techniques described herein may be used to fabricate defect free or near defect free interconnect structures in a semiconductor device. This reduces contact resistance for the interconnect structures, reduces premature device failure for the semiconductor device, increases manufacturing yield, and increases tolerance of the interconnect structures to subsequent processing operations, among other examples.
    Type: Application
    Filed: January 6, 2022
    Publication date: May 4, 2023
    Inventors: Kan-Ju LIN, Chien CHANG, Chih-Shiun CHOU, Tai Min CHANG, Hung-Yi HUANG, Chih-Wei CHANG, Ming-Hsing TSAI, Lin-Yu HUANG
  • Publication number: 20230054148
    Abstract: A conductive structure, includes: a plurality of conductive layers; a plurality of conductive pillars being formed on the plurality of conductive layers, respectively; and a molding compound laterally coating the plurality of conductive pillars. Each of the plurality of conductive pillars is a taper-shaped conductive pillar, and is tapered from the conductive layers.
    Type: Application
    Filed: November 2, 2022
    Publication date: February 23, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hung-Jui Kuo, Hui-Jung Tsai, Tai-Min Chang, Chia-Wei Wang
  • Patent number: 11587902
    Abstract: A method includes encapsulating a device in an encapsulating material, planarizing the encapsulating material and the device, and forming a conductive feature over the encapsulating material and the device. The formation of the conductive feature includes depositing a first conductive material to from a first seed layer, depositing a second conductive material different from the first conductive material over the first seed layer to form a second seed layer, plating a metal region over the second seed layer, performing a first etching on the second seed layer, performing a second etching on the first seed layer, and after the first seed layer is etched, performing a third etching on the second seed layer and the metal region.
    Type: Grant
    Filed: September 19, 2019
    Date of Patent: February 21, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hui-Jung Tsai, Yun Chen Hsieh, Jyun-Siang Peng, Tai-Min Chang, Yi-Yang Lei, Hung-Jui Kuo, Chen-Hua Yu
  • Publication number: 20230048907
    Abstract: An integrated circuit includes a semiconductor substrate, contact pads, testing pads, conductive posts, dummy posts, and a protection layer. The contact pads and the testing pads are distributed over the semiconductor substrate. The conductive posts are disposed on the contact pads. The dummy posts are disposed on the testing pads and are electrically floating. The protection layer covers the conductive posts and the dummy posts. A distance between top surfaces of the conductive posts and a top surface of the protection layer is smaller than a distance between top surfaces of the dummy posts and the top surface of the protection layer.
    Type: Application
    Filed: November 1, 2022
    Publication date: February 16, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hung-Jui Kuo, Hui-Jung Tsai, Tai-Min Chang, Chia-Wei Wang
  • Publication number: 20230036693
    Abstract: Semiconductor devices and methods of manufacturing are provided. In some embodiments the method includes depositing an etch stop layer over a first hard mask material, the first hard mask material over a gate stack, depositing an interlayer dielectric over the etch stop layer, forming a first opening through the interlayer dielectric, the etch stop layer, and the first hard mask material, the first opening exposing a conductive portion of the gate stack, and treating sidewalls of the first opening with a first dopant to form a first treated region within the interlayer dielectric, a second treated region within the etch stop layer, a third treated region within the first hard mask material, and a fourth treated region within the conductive portion, wherein after the treating the fourth treated region has a higher concentration of the first dopant than the first treated region.
    Type: Application
    Filed: February 18, 2022
    Publication date: February 2, 2023
    Inventors: Kan-Ju Lin, Chien Chang, Chih-Shiun Chou, Tai Min Chang, Yi-Ning Tai, Hung-Yi Huang, Chih-Wei Chang, Ming-Hsing Tsai, Lin-Yu Huang
  • Publication number: 20230008239
    Abstract: A barrier layer is formed in a portion of a thickness of sidewalls in a recess prior to formation of an interconnect structure in the recess. The barrier layer is formed in the portion of the thickness of the sidewalls by a plasma-based deposition operation, in which a precursor reacts with a silicon-rich surface to form the barrier layer. The barrier layer is formed in the portion of the thickness of the sidewalls in that the precursor consumes a portion of the silicon-rich surface of the sidewalls as a result of the plasma treatment. This enables the barrier layer to be formed in a manner in which the cross-sectional width reduction in the recess from the barrier layer is minimized while enabling the barrier layer to be used to promote adhesion in the recess.
    Type: Application
    Filed: April 12, 2022
    Publication date: January 12, 2023
    Inventors: Chien CHANG, Min-Hsiu HUNG, Yu-Hsiang LIAO, Yu-Shiuan WANG, Tai Min CHANG, Kan-Ju LIN, Chih-Shiun CHOU, Hung-Yi HUANG, Chih-Wei CHANG, Ming-Hsing TSAI
  • Patent number: 11515276
    Abstract: An integrated circuit includes a semiconductor substrate, contact pads, testing pads, conductive posts, and dummy posts. The contact pads and the testing pads are distributed over the semiconductor substrate. The conductive posts are disposed on the contact pads. The dummy posts are disposed on the testing pads. A height of the conductive posts is greater than a height of the dummy posts.
    Type: Grant
    Filed: August 30, 2020
    Date of Patent: November 29, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hung-Jui Kuo, Hui-Jung Tsai, Tai-Min Chang, Chia-Wei Wang
  • Patent number: 11515224
    Abstract: A package includes a device die, an encapsulant encapsulating the device die therein, a first plurality of through-vias penetrating through the encapsulant, a second plurality of through-vias penetrating through the encapsulant, and redistribution lines over and electrically coupling to the first plurality of through-vias. The first plurality of through-vias include an array. The second plurality of through-vias are outside of the first array, and the second plurality of through-vias are larger than the first plurality of through-vias.
    Type: Grant
    Filed: January 17, 2020
    Date of Patent: November 29, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hung-Jui Kuo, Tai-Min Chang, Hui-Jung Tsai, De-Yuan Lu, Ming-Tan Lee
  • Patent number: 11508633
    Abstract: A conductive structure, includes: a plurality of conductive layers; a plurality of conductive pillars being formed on the plurality of conductive layers, respectively; and a molding compound laterally coating the plurality of conductive pillars. Each of the plurality of conductive pillars is a taper-shaped conductive pillar, and is tapered from the conductive layers.
    Type: Grant
    Filed: May 28, 2020
    Date of Patent: November 22, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hung-Jui Kuo, Hui-Jung Tsai, Tai-Min Chang, Chia-Wei Wang
  • Publication number: 20220336307
    Abstract: A package includes a device die, an encapsulant encapsulating the device die therein, a first plurality of through-vias penetrating through the encapsulant, a second plurality of through-vias penetrating through the encapsulant, and redistribution lines over and electrically coupling to the first plurality of through-vias. The first plurality of through-vias include an array. The second plurality of through-vias are outside of the first array, and the second plurality of through-vias are larger than the first plurality of through-vias.
    Type: Application
    Filed: June 30, 2022
    Publication date: October 20, 2022
    Inventors: Hung-Jui Kuo, Tai-Min Chang, Hui-Jung Tsai, De-Yuan Lu, Ming-Tan Lee
  • Publication number: 20220299880
    Abstract: A method for removing a resist layer including the following steps is provided. A patterned resist layer on a material layer is formed. A stripping solution is applied to the patterned resist layer to dissolve the patterned resist layer without dissolving the material layer, wherein the stripping solution comprises a non-dimethyl sulfoxide solvent and an alkaline compound, the non-dimethyl sulfoxide solvent comprises an aprotic solvent and a protic solvent.
    Type: Application
    Filed: June 1, 2022
    Publication date: September 22, 2022
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hung-Jui Kuo, Hui-Jung Tsai, Tai-Min Chang