Patents by Inventor Taimur Malik

Taimur Malik has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10619087
    Abstract: Provided herein are liquid polymer (LP) compositions comprising a synthetic (co)polymer (e.g., an acrylamide (co)polymer), as well as methods for preparing inverted polymer solutions by inverting these LP compositions in an aqueous fluid. The resulting inverted polymer solutions can have a concentration of a synthetic (co)polymer (e.g., an acrylamide (co)polymer) of from 50 to 15,000 ppm, and a filter ratio of 1.5 or less at 15 psi using a 1.2 ?m filter. Also provided are methods of using these inverted polymer solutions in oil and gas operations, including enhanced oil recovery.
    Type: Grant
    Filed: December 7, 2016
    Date of Patent: April 14, 2020
    Assignee: Chevron U.S.A. Inc.
    Inventors: Do Hoon Kim, Dennis Arun Alexis, Varadarajan Dwarakanath, David Espinosa, Taimur Malik, Logan Jackson, Tom Lynch, Ronald Robinson, Frances Fournier, Hong Yang, Sukhjit Aujla
  • Publication number: 20200056087
    Abstract: Provided herein are compositions comprising borate-acid buffers, as well as methods of using these compositions in oil and gas operations, including enhanced oil recovery (EOR) operations, fracturing operations, stimulation operations, etc.
    Type: Application
    Filed: July 31, 2019
    Publication date: February 20, 2020
    Inventors: Nabijan NIZAMIDIN, Gayani W. PINNAWALA, Guo-Qing TANG, Varadarajan DWARAKANATH, Gregory A. WINSLOW, Jordan Taylor Isbell, Taimur Malik
  • Patent number: 10501677
    Abstract: Provided herein are novel surfactant compositions and methods having application in a variety of fields including enhanced oil recovery, the cleaning industry as well as groundwater remediation. The surfactant compositions are based on lignin bio-oil with a phenol hydroxyl group as the main functional group. The compositions include carboxylic surfactant s and mixed hydrophilic and hydrophobic surfactant structures, which can be used for the recovery of crude oil compositions from challenging reservoirs.
    Type: Grant
    Filed: August 2, 2017
    Date of Patent: December 10, 2019
    Assignee: CHEVRON U.S.A. INC.
    Inventors: Douglas G. Naae, Gregory A. Winslow, Varadarajan Dwarakanath, Taimur Malik, Gayani Pinnawala Arachchilage
  • Publication number: 20190367685
    Abstract: Provided herein are liquid polymer (LP) compositions comprising a synthetic (co)polymer (e.g., an acrylamide (co)polymer), as well as methods for preparing aqueous polymer solutions by combining these LP compositions with an aqueous fluid. The resulting aqueous polymer solutions can have a concentration of a synthetic (co)polymer (e.g., an acrylamide (co)polymer) of from 50 to 15,000 ppm, and a filter ratio of 1.5 or less at 15 psi using a 1.2 ?m filter. Also provided are methods of using these aqueous polymer solutions in oil and gas operations, including enhanced oil recovery.
    Type: Application
    Filed: June 14, 2019
    Publication date: December 5, 2019
    Inventors: Do Hoon Kim, Dennis A. Alexis, Varadarajan Dwarakanath, David R. Espinosa, Taimur Malik, Peter G. New, Adam C. Jackson, Christopher Michael Niemi
  • Publication number: 20190345800
    Abstract: Additional oil recovery is obtained from a reservoir with a composition comprising at least a coupling solvent typically employed in waterborne coating compositions. Provided herein are embodiments of methods of recovering hydrocarbons using at least one coupling solvent, such as an oxygenated coupling solvent. The coupling solvent increases the mutual solubility with water at the injection temperature to facilitate the mixing and injection, particularly with an optional co-solvent. The coupling solvent helps mitigate formation plugging and improve performance when injected into a formation, as the solvent mixture moves from being miscible in the injection field water to being miscible in the reservoir oil, mobilizing the reservoir oil to increase oil recovery.
    Type: Application
    Filed: May 24, 2019
    Publication date: November 14, 2019
    Inventors: Varadarajan DWARAKANATH, Robert G. SHONG, Gregory A. WINSLOW, Taimur MALIK, Marlon SOLANO
  • Publication number: 20190233716
    Abstract: Disclosed are compositions and methods for use in oil and gas operations.
    Type: Application
    Filed: January 30, 2019
    Publication date: August 1, 2019
    Inventors: Dennis A. ALEXIS, Gayani PINNAWALA ARACHCHILAGE, Varadarajan DWARAKANATH, Do Hoon KIM, Taimur MALIK, Gregory A. WINSLOW, Aaron WILHELM
  • Publication number: 20190233715
    Abstract: Disclosed are compositions and methods for use in oil and gas operations.
    Type: Application
    Filed: January 30, 2019
    Publication date: August 1, 2019
    Inventors: Dennis A. ALEXIS, Gayani PINNAWALA ARACHCHILAGE, Varadarajan DWARAKANATH, Do Hoon KIM, Taimur MALIK, Gregory A. WINSLOW, Aaron WILHELM
  • Patent number: 10344129
    Abstract: Provided herein are liquid polymer (LP) compositions comprising a synthetic (co)polymer (e.g., an acrylamide (co)polymer), as well as methods for preparing aqueous polymer solutions by combining these LP compositions with an aqueous fluid. The resulting aqueous polymer solutions can have a concentration of a synthetic (co)polymer (e.g., an acrylamide (co)polymer) of from 50 to 15,000 ppm, and a filter ratio of 1.5 or less at 15 psi using a 1.2 ?m filter. Also provided are methods of using these aqueous polymer solutions in oil and gas operations, including enhanced oil recovery.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: July 9, 2019
    Assignee: Chevron U.S.A. Inc.
    Inventors: Do Hoon Kim, Dennis A. Alexis, Varadarajan Dwarakanath, David R. Espinosa, Taimur Malik, Peter G. New, Adam C. Jackson, Christopher Michael Niemi
  • Patent number: 10337303
    Abstract: Additional oil recovery is obtained from a reservoir with a composition comprising at least a coupling solvent typically employed in waterborne coating compositions. Embodiments include recovering hydrocarbons using at least one coupling solvent, such as an oxygenated coupling solvent. The coupling solvent increases the mutual solubility with water at the injection temperature to facilitate the mixing and injection, particularly with an optional co-solvent. The coupling solvent helps mitigate formation plugging and improve performance when injected into a formation, as the solvent mixture moves from being miscible in the injection field water to being miscible in the reservoir oil, mobilizing the reservoir oil to increase oil recovery.
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: July 2, 2019
    Assignee: Chevron U.S.A. Inc.
    Inventors: Varadarajan Dwarakanath, Robert G. Shong, Gregory Winslow, Taimur Malik, Marlon Solano
  • Publication number: 20180230788
    Abstract: Additional oil recovery is obtained from a reservoir with a composition comprising at least a coupling solvent typically employed in waterborne coating compositions. Provided herein are embodiments of methods of recovering hydrocarbons using at least one coupling solvent, such as an oxygenated coupling solvent. The coupling solvent increases the mutual solubility with water at the injection temperature to facilitate the mixing and injection, particularly with an optional co-solvent. The coupling solvent helps mitigate formation plugging and improve performance when injected into a formation, as the solvent mixture moves from being miscible in the injection field water to being miscible in the reservoir oil, mobilizing the reservoir oil to increase oil recovery.
    Type: Application
    Filed: September 2, 2016
    Publication date: August 16, 2018
    Inventors: Varadarajan Dwarakanath, Robert G. Shong, Gregory Winslow, Taimur Malik, Marlon Solano
  • Publication number: 20180155505
    Abstract: Provided herein are liquid polymer (LP) compositions comprising a synthetic (co)polymer (e.g., an acrylamide (co)polymer), as well as methods for preparing aqueous polymer solutions by combining these LP compositions with an aqueous fluid. The resulting aqueous polymer solutions can have a concentration of a synthetic (co)polymer (e.g., an acrylamide (co)polymer) of from 50 to 15,000 ppm, and a filter ratio of 1.5 or less at 15 psi using a 1.2 ?m filter. Also provided are methods of using these aqueous polymer solutions in oil and gas operations, including enhanced oil recovery.
    Type: Application
    Filed: December 7, 2017
    Publication date: June 7, 2018
    Inventors: Do Hoon Kim, Dennis A. Alexis, Varadarajan Dwarakanath, David R. Espinosa, Taimur Malik, Peter G. New, Adam C. Jackson, Christopher Michael Niemi
  • Patent number: 9909053
    Abstract: Embodiments of a polymer composition are disclosed for use in enhancing the production of oil from a formation. In one embodiment, the composition includes a powder polymer having an average molecular weight of 0.5 to 30 Million Daltons suspended in a water soluble solvent having an HLB of greater than or equal to 8 and selected from the group of surfactants, glycol ethers, alcohols, co-solvents, and mixtures thereof, at a weight ratio of powder polymer to water soluble solvent ranging from 20:80 to 80:20. The polymer composition is substantially anhydrous. The polymer composition is hydrated in an aqueous fluid for an injection solution in less than or equal to 4 hours containing a polymer concentration ranging from 100 ppm to 50,000 ppm and having a filter ratio of less than or equal to 1.5 at 15 psi using a 1.2 ?m filter.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: March 6, 2018
    Assignee: CHEVRON U.S.A. INC.
    Inventors: Varadarajan Dwarakanath, Robert M. Dean, Do Hoon Kim, Dennis Arun Alexis, Sophany Thach, Taimur Malik, Anette Poulsen, Sumitra Subrahmanyan
  • Patent number: 9902895
    Abstract: An injection solution for injecting into a subterranean reservoir to enhance production and recovery of oil from the reservoir is disclosed. In one embodiment, the injection solution is prepared by mixing a sufficient amount of a pumpable, stable and substantially anhydrous polymer suspension in an aqueous fluid for the polymer to be hydrated in less than or equal to 4 hours, resulting in the injection solution containing a polymer concentration ranging from 100 ppm to 50,000 ppm. The injection solution has a filter ratio of less than or equal to 1.5 at 15 psi using a 1.2 ?m filter. The polymer suspension comprises a powder polymer having an average molecular weight of 0.5 to 30 Million Daltons suspended in a water soluble solvent having an HLB of greater than or equal to 8 and selected from a group, at a weight ratio from 20:80 to 80:20.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: February 27, 2018
    Assignee: CHEVRON U.S.A. INC.
    Inventors: Varadarajan Dwarakanath, Robert M. Dean, Do Hoon Kim, Dennis Arun Alexis, Sophany Thach, Taimur Malik, Anette Poulsen, Sumitra Subrahmanyan
  • Patent number: 9902894
    Abstract: A method for making a polymer suspension for use in enhancing the production of oil from a formation is disclosed. In one embodiment, the method comprises mixing a powder polymer having an average molecular weight of 0.5 to 30 Million Daltons into a water soluble solvent having an HLB of greater than or equal to 8 for less than or equal to 24 hours. The water soluble solvent is selected from a group, at a weight ratio from 20:80 to 80:20. The polymer suspension is stable, pumpable, and substantially anhydrous; and it is hydrated for an injection solution in less than or equal to 4 hours, containing a polymer concentration ranging from 100 ppm to 50,000 ppm and having a filter ratio of less than or equal to 1.5 at 15 psi using a 1.2 ?m filter, by mixing a sufficient amount of the polymer suspension in an aqueous fluid.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: February 27, 2018
    Assignee: CHEVRON U.S.A. INC.
    Inventors: Varadarajan Dwarakanath, Robert M. Dean, Do Hoon Kim, Dennis Arun Alexis, Sophany Thach, Taimur Malik, Anette Poulsen, Sumitra Subrahmanyan
  • Patent number: 9896617
    Abstract: A method of enhancing oil recovery in a subterranean reservoir is disclosed. In one embodiment, the method comprises providing a wellbore and a polymer suspension. The polymer suspension comprises a powder polymer having an average molecular weight of 0.5 to 30 Million Daltons suspended in a water soluble solvent having an HLB of greater than or equal to 8 and selected from a group, at a weight ratio of 20:80 to 80:20. The method comprises providing an aqueous fluid, mixing a sufficient amount of the polymer suspension in the aqueous fluid for the polymer to be hydrated resulting an injection solution in less than or equal to 4 hours, and injecting the injection solution into the wellbore. The injection solution contains a polymer concentration ranging from 100 ppm to 50,000 ppm and has a filter ratio of less than 1.5 at 15 psi using a 1.2 ?m filter.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: February 20, 2018
    Assignee: CHEVRON U.S.A. INC.
    Inventors: Varadarajan Dwarakanath, Robert M. Dean, Do Hoon Kim, Dennis Arun Alexis, Sophany Thach, Taimur Malik, Anette Poulsen, Sumitra Subrahmanyan
  • Publication number: 20180037794
    Abstract: Provided herein are novel surfactant compositions and methods having application in a variety of fields including enhanced oil recovery, the cleaning industry as well as groundwater remediation. The surfactant compositions are based on lignin bio-oil with a phenol hydroxyl group as the main functional group. The compositions include carboxylic surfactant s and mixed hydrophilic and hydrophobic surfactant structures, which can be used for the recovery of crude oil compositions from challenging reservoirs.
    Type: Application
    Filed: August 2, 2017
    Publication date: February 8, 2018
    Inventors: Douglas G. Naae, Gregory A. Winslow, Varadarajan Dwarakanath, Taimur Malik, Gayani Pinnawala Arachchilage
  • Patent number: 9810049
    Abstract: The present disclosure provides techniques for inline injection of water and chemicals for a dump flood. The techniques include collecting water from a source reservoir into a water collection zone of an adjacent water injection well, and injecting a chemical solution into the water injection well. The water and the chemical solution are then mixed downhole in a mixer, such as a static mixer. The mixed injection fluid is then directly injected into an adjacent target reservoir.
    Type: Grant
    Filed: June 25, 2015
    Date of Patent: November 7, 2017
    Assignee: CHEVRON U.S.A. INC.
    Inventors: Robert Matthew Dean, Varadarajan Dwarakanath, Taimur Malik, Will Sherman Slaughter, Dustin L. Walker
  • Publication number: 20170158948
    Abstract: Provided herein are liquid polymer (LP) compositions comprising a synthetic (co)polymer (e.g., an acrylamide (co)polymer), as well as methods for preparing inverted polymer solutions by inverting these LP compositions in an aqueous fluid. The resulting inverted polymer solutions can have a concentration of a synthetic (co)polymer (e.g., an acrylamide (co)polymer) of from 50 to 15,000 ppm, and a filter ratio of 1.5 or less at 15 psi using a 1.2 ?m filter. Also provided are methods of using these inverted polymer solutions in oil and gas operations, including enhanced oil recovery.
    Type: Application
    Filed: December 7, 2016
    Publication date: June 8, 2017
    Inventors: Do Hoon Kim, Dennis Arun Alexis, Varadarajan Dwarakanath, David Espinosa, Taimur Malik, Logan Jackson, Tom Lynch, Ronald Robinson, Frances Fournier, Hong Yang, Sukhjit Aujla
  • Publication number: 20170158947
    Abstract: Provided herein are liquid polymer (LP) compositions comprising a synthetic (co)polymer (e.g., an acrylamide (co)polymer), as well as methods for preparing inverted polymer solutions by inverting these LP compositions in an aqueous fluid. The resulting inverted polymer solutions can have a concentration of a synthetic (co)polymer (e.g., an acrylamide (co)polymer) of from 50 to 15,000 ppm, and a filter ratio of 1.5 or less at 15 psi using a 1.2 ?m filter. Also provided are methods of using these inverted polymer solutions in oil and gas operations, including enhanced oil recovery.
    Type: Application
    Filed: December 7, 2016
    Publication date: June 8, 2017
    Inventors: Do Hoon Kim, Dennis Arun Alexis, Varadarajan Dwarakanath, David Espinosa, Taimur Malik, Logan Jackson, Tom Lynch, Ronald Robinson, Frances Fournier, Hong Yang, Sukhjit Aujla
  • Publication number: 20160122624
    Abstract: An injection solution for injecting into a subterranean reservoir to enhance production and recovery of oil from the reservoir is disclosed. In one embodiment, the injection solution is prepared by mixing a sufficient amount of a pumpable, stable and substantially anhydrous polymer suspension in an aqueous fluid for the polymer to be hydrated in less than or equal to 4 hours, resulting in the injection solution containing a polymer concentration ranging from 100 ppm to 50,000 ppm. The injection solution has a filter ratio of less than or equal to 1.5 at 15 psi using a 1.2 ?m filter. The polymer suspension comprises a powder polymer having an average molecular weight of 0.5 to 30 Million Daltons suspended in a water soluble solvent having an HLB of greater than or equal to 8 and selected from a group, at a weight ratio from 20:80 to 80:20.
    Type: Application
    Filed: October 29, 2015
    Publication date: May 5, 2016
    Inventors: Varadarajan Dwarakanath, Robert M. Dean, Do Hoon Kim, Dennis Arun Alexis, Sophany Thach, Taimur Malik, Anette Poulsen, Sumitra Subrahmanyan