Patents by Inventor Taisia Tsukruk Lou

Taisia Tsukruk Lou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10937006
    Abstract: A method, system and computer program product are provided in order to evaluate corrosion loss and to establish maintenance actions based thereupon. In the context of a method, a structure is inspected to generate corrosion information and a corrosion model of the structure is generated based upon the corrosion information. The method also includes generating a combined corrosion model based upon the corrosion model and a baseline model of the structure including material types and thicknesses at respective locations on the structure. The method further includes establishing maintenance actions including modification of an inspection interval based upon the combined corrosion model. Corresponding systems and computer program products are also provided.
    Type: Grant
    Filed: June 9, 2017
    Date of Patent: March 2, 2021
    Assignee: The Boeing Company
    Inventors: Roger W. Engelbart, Taisia Tsukruk Lou
  • Patent number: 10773458
    Abstract: Apparatuses and systems comprising an additive manufacturing device and an associated terahertz inspection device for inspecting additively deposited layers in real time during or immediately following material deposition and parts made and inspected by the apparatuses and systems and their associated methods are disclosed herein.
    Type: Grant
    Filed: February 2, 2018
    Date of Patent: September 15, 2020
    Assignee: The Boeing Company
    Inventors: Taisia Tsukruk Lou, Donald Duane Palmer, Jr., Nathan Rylan Smith, Shayne Andrew Dorrell
  • Patent number: 10613041
    Abstract: A system for quantifying x-ray backscatter system performance is disclosed. The system includes one or more x-ray backscatter detectors, an x-ray tube, a support, and a plurality of rods mounted on the support and arranged in groups. Each group of rods includes at least two rods having the same width. The system also includes a user interface configured to connect to the x-ray backscatter detectors to receive a backscatter signal from the x-ray backscatter detectors associated with the x-ray tube, where the user interface plots a modulation transfer function representing x-ray backscatter for each rod of the plurality of rods from x-rays transmitted by the x-ray tube.
    Type: Grant
    Filed: September 4, 2019
    Date of Patent: April 7, 2020
    Assignee: The Boeing Company
    Inventors: Matthew T. Grimshaw, Talion Edwards, Gary E. Georgeson, Daniel J. Wright, James E. Engel, Morteza Safai, Yuan-Jye Wu, Taisia Tsukruk Lou, Rodney S. Wright
  • Publication number: 20200003707
    Abstract: A system for quantifying x-ray backscatter system performance is disclosed. The system includes one or more x-ray backscatter detectors, an x-ray tube, a support, and a plurality of rods mounted on the support and arranged in groups. Each group of rods includes at least two rods having the same width. The system also includes a user interface configured to connect to the x-ray backscatter detectors to receive a backscatter signal from the x-ray backscatter detectors associated with the x-ray tube, where the user interface plots a modulation transfer function representing x-ray backscatter for each rod of the plurality of rods from x-rays transmitted by the x-ray tube.
    Type: Application
    Filed: September 4, 2019
    Publication date: January 2, 2020
    Inventors: Matthew T. Grimshaw, Talion Edwards, Gary E. Georgeson, Daniel J. Wright, James E. Engel, Morteza Safai, Yuan-Jye Wu, Taisia Tsukruk Lou, Rodney S. Wright
  • Patent number: 10436724
    Abstract: A system for quantifying x-ray backscatter system performance may include a support; a plurality of rods mounted on the support; the rods of the plurality of rods arranged parallel to each other, having generally curved outer surfaces, and being arranged in groups of varying widths, each group of the groups having at least two of the rods of a same width; and a user interface configured to be connected to receive a backscatter signal from an x-ray backscatter detector associated with an x-ray tube, apply a transfer function to generate a transfer curve representing x-ray backscatter for each rod of the plurality of rods from x-rays transmitted by the x-ray tube.
    Type: Grant
    Filed: June 16, 2016
    Date of Patent: October 8, 2019
    Assignee: The Boeing Company
    Inventors: Matthew T. Grimshaw, Talion Edwards, Gary E. Georgeson, Daniel J. Wright, James E. Engel, Morteza Safai, Yuan-Jye Wu, Taisia Tsukruk Lou, Rodney S. Wright
  • Publication number: 20190240908
    Abstract: Apparatuses and systems comprising an additive manufacturing device and an associated terahertz inspection device for inspecting additively deposited layers in real time during or immediately following material deposition and parts made and inspected by the apparatuses and systems and their associated methods are disclosed herein.
    Type: Application
    Filed: February 2, 2018
    Publication date: August 8, 2019
    Inventors: Taisia Tsukruk Lou, Donald Duane Palmer, JR., Nathan Rylan Smith, Shayne Andrew Dorrell
  • Publication number: 20180357613
    Abstract: A method, system and computer program product are provided in order to evaluate corrosion loss and to establish maintenance actions based thereupon. In the context of a method, a structure is inspected to generate corrosion information and a corrosion model of the structure is generated based upon the corrosion information. The method also includes generating a combined corrosion model based upon the corrosion model and a baseline model of the structure including material types and thicknesses at respective locations on the structure. The method further includes establishing maintenance actions including modification of an inspection interval based upon the combined corrosion model. Corresponding systems and computer program products are also provided.
    Type: Application
    Filed: June 9, 2017
    Publication date: December 13, 2018
    Inventors: Roger W. Engelbart, Taisia Tsukruk Lou
  • Publication number: 20170227478
    Abstract: A system for quantifying x-ray backscatter system performance may include a support; a plurality of rods mounted on the support; the rods of the plurality of rods arranged parallel to each other, having generally curved outer surfaces, and being arranged in groups of varying widths, each group of the groups having at least two of the rods of a same width; and a user interface configured to be connected to receive a backscatter signal from an x-ray backscatter detector associated with an x-ray tube, apply a transfer function to generate a transfer curve representing x-ray backscatter for each rod of the plurality of rods from x-rays transmitted by the x-ray tube.
    Type: Application
    Filed: June 16, 2016
    Publication date: August 10, 2017
    Inventors: Matthew T. Grimshaw, Talion Edwards, Gary E. Georgeson, Daniel J. Wright, James E. Engel, Morteza Safai, Yuan-Jye Wu, Taisia Tsukruk Lou, Rodney S. Wright
  • Patent number: 9689813
    Abstract: A method and apparatus are presented. X-rays are directed at a workpiece. The workpiece includes a fastener installed in an opening. Backscatter is received from the workpiece. It is determined if the fastener installed in the opening has an out of tolerance gap using the backscatter. An output is generated if the fastener installed in the opening has the out of tolerance gap.
    Type: Grant
    Filed: February 27, 2015
    Date of Patent: June 27, 2017
    Assignee: THE BOEING COMPANY
    Inventors: Taisia Tsukruk Lou, William Talion Edwards, Gregory Paul Saguto
  • Patent number: 9506879
    Abstract: A method and system are provided for non-destructively evaluating a workpiece hidden by an overlying structure. In the context of a method, a workpiece is interrogated with radiation, such as x-ray radiation, that also propagates through the overlying structure. The method further includes collecting data representative of radiation backscattered from the workpiece. Based upon a thickness and material of the overlying structure, the method compares the data that has been collected from the workpiece with reference data representative of radiation backscattered from a standard that includes different respective material loss indicators hidden by an overlying structure of the same thickness and material. Each material loss indicator is a physical representation of a different amount of material loss. As a result of the comparison, the method estimates the material loss of the workpiece.
    Type: Grant
    Filed: October 2, 2014
    Date of Patent: November 29, 2016
    Assignee: The Boeing Company
    Inventors: Roger W. Engelbart, Taisia Tsukruk Lou
  • Publication number: 20160252468
    Abstract: A method and apparatus are presented. X-rays are directed at a workpiece. The workpiece includes a fastener installed in an opening. Backscatter is received from the workpiece. It is determined if the fastener installed in the opening has an out of tolerance gap using the backscatter. An output is generated if the fastener installed in the opening has the out of tolerance gap.
    Type: Application
    Filed: February 27, 2015
    Publication date: September 1, 2016
    Inventors: Taisia Tsukruk Lou, William Talion Edwards, Gergory Paul Saguto
  • Patent number: 9398676
    Abstract: A system for quantifying x-ray backscatter system performance may include a support, a plurality of rods mounted on the support, the rods of the plurality of rods arranged in parallel to each other, having generally curved outer surfaces, and being arranged in groups of varying widths, each group of the groups having at least two of the rods of a same width, and a user interface configured to be connected to receive a backscatter signal from an x-ray backscatter detector associated with an x-ray tube, and generate a display representing photon counts of x-ray backscatter for each rod of the plurality of rods from x-rays transmitted by the x-ray tube.
    Type: Grant
    Filed: May 5, 2014
    Date of Patent: July 19, 2016
    Assignee: THE BOEING COMPANY
    Inventors: Matthew T. Grimshaw, Talion Edwards, Gary E. Georgeson, Daniel J. Wright, James E. Engel, Morteza Safai, Yuan-Jye Wu, Taisia Tsukruk Lou, Rodney S. Wright
  • Publication number: 20150319832
    Abstract: A system for quantifying x-ray backscatter system performance may include a support, a plurality of rods mounted on the support, the rods of the plurality of rods arranged in parallel to each other, having generally curved outer surfaces, and being arranged in groups of varying widths, each group of the groups having at least two of the rods of a same width, and a user interface configured to be connected to receive a backscatter signal from an x-ray backscatter detector associated with an x-ray tube, and generate a display representing photon counts of x-ray backscatter for each rod of the plurality of rods from x-rays transmitted by the x-ray tube.
    Type: Application
    Filed: May 5, 2014
    Publication date: November 5, 2015
    Applicant: The Boeing Company
    Inventors: Matthew T. Grimshaw, Talion Edwards, Gary E. Georgeson, Daniel J. Wright, James E. Engel, Morteza Safai, Yuan-Jye Wu, Taisia Tsukruk Lou, Rodney S. Wright
  • Publication number: 20150055757
    Abstract: A method and system are provided for non-destructively evaluating a workpiece hidden by an overlying structure. In the context of a method, a workpiece is interrogated with radiation, such as x-ray radiation, that also propagates through the overlying structure. The method further includes collecting data representative of radiation backscattered from the workpiece. Based upon a thickness and material of the overlying structure, the method compares the data that has been collected from the workpiece with reference data representative of radiation backscattered from a standard that includes different respective material loss indicators hidden by an overlying structure of the same thickness and material. Each material loss indicator is a physical representation of a different amount of material loss. As a result of the comparison, the method estimates the material loss of the workpiece.
    Type: Application
    Filed: October 2, 2014
    Publication date: February 26, 2015
    Inventors: Roger W. Engelbart, Taisia Tsukruk Lou