Patents by Inventor Tak On Chan

Tak On Chan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11842005
    Abstract: In some examples, a touch screen includes resistors between the touch electrodes and routing traces. In some examples, the resistors can include a transparent conductive material included in the touch electrodes of the touch screen. The resistors can be located in a border region of the touch screen that can surround an active area of the touch screen that can include the touch electrodes and display pixels of the touch screen, for example. In some examples, the resistors included in the touch screen can have different resistances from each other and the same outer dimensions as one another. The resistors can reduce the variation in resistance from channel to channel in the touch screen, which can improve touch screen performance, for example.
    Type: Grant
    Filed: February 13, 2023
    Date of Patent: December 12, 2023
    Assignee: Apple Inc.
    Inventors: Zhou Lu, Isaac Wing-Tak Chan, Justin Zachary Wu, Rangarajan Krishnan, Qingbo Guo, Chao Zhang
  • Publication number: 20230195254
    Abstract: In some examples, a touch screen includes resistors between the touch electrodes and routing traces. In some examples, the resistors can include a transparent conductive material included in the touch electrodes of the touch screen. The resistors can be located in a border region of the touch screen that can surround an active area of the touch screen that can include the touch electrodes and display pixels of the touch screen, for example. In some examples, the resistors included in the touch screen can have different resistances from each other and the same outer dimensions as one another. The resistors can reduce the variation in resistance from channel to channel in the touch screen, which can improve touch screen performance, for example.
    Type: Application
    Filed: February 13, 2023
    Publication date: June 22, 2023
    Inventors: Zhou LU, Isaac Wing-Tak CHAN, Justin Zachary WU, Rangarajan KRISHNAN, Qingbo GUO, Chao ZHANG
  • Publication number: 20230117403
    Abstract: Disclosed are compounds of Formula 1, including all geometric and stereoisomers, N-oxides, and salts thereof, Wherein R1, A, R2, R4, R5 and Q are as defined in the disclosure. Also disclosed are compositions containing the compounds of Formula 1 and methods for controlling an invertebrate pest comprising contacting the invertebrate pest or its environment with a biologically effective amount of a compound or a composition of the disclosure.
    Type: Application
    Filed: January 29, 2021
    Publication date: April 20, 2023
    Inventors: Omar Khaled AHMAD, Twyla A. BRIDDELL, Dominic Ming-Tak CHAN, Yuzhong CHEN, Jason Charles HAMM, Moumita KAR, Thomas Francis PAHUTSKI, JR., Thomas Martin STEVENSON, Ming XU, Rachel SLACK
  • Patent number: 11592929
    Abstract: In some examples, a touch screen includes resistors between the touch electrodes and routing traces. In some examples, the resistors can include a transparent conductive material included in the touch electrodes of the touch screen. The resistors can be located in a border region of the touch screen that can surround an active area of the touch screen that can include the touch electrodes and display pixels of the touch screen, for example. In some examples, the resistors included in the touch screen can have different resistances from each other and the same outer dimensions as one another. The resistors can reduce the variation in resistance from channel to channel in the touch screen, which can improve touch screen performance, for example.
    Type: Grant
    Filed: January 24, 2022
    Date of Patent: February 28, 2023
    Assignee: Apple Inc.
    Inventors: Zhou Lu, Isaac Wing-Tak Chan, Justin Zachary Wu, Rangarajan Krishnan, Qingbo Guo, Chao Zhang
  • Publication number: 20220147217
    Abstract: In some examples, a touch screen includes resistors between the touch electrodes and routing traces. In some examples, the resistors can include a transparent conductive material included in the touch electrodes of the touch screen. The resistors can be located in a border region of the touch screen that can surround an active area of the touch screen that can include the touch electrodes and display pixels of the touch screen, for example. In some examples, the resistors included in the touch screen can have different resistances from each other and the same outer dimensions as one another. The resistors can reduce the variation in resistance from channel to channel in the touch screen, which can improve touch screen performance, for example.
    Type: Application
    Filed: January 24, 2022
    Publication date: May 12, 2022
    Inventors: Zhou LU, Isaac Wing-Tak CHAN, Justin Zachary WU, Rangarajan KRISHNAN, Qingbo GUO, Chao ZHANG
  • Publication number: 20220050571
    Abstract: In some examples, a touch screen includes resistors between the touch electrodes and routing traces. In some examples, the resistors can include a transparent conductive material included in the touch electrodes of the touch screen. The resistors can be located in a border region of the touch screen that can surround an active area of the touch screen that can include the touch electrodes and display pixels of the touch screen, for example. In some examples, the resistors included in the touch screen can have different resistances from each other and the same outer dimensions as one another. The resistors can reduce the variation in resistance from channel to channel in the touch screen, which can improve touch screen performance, for example.
    Type: Application
    Filed: August 14, 2020
    Publication date: February 17, 2022
    Inventors: Zhou LU, Isaac Wing-Tak CHAN, Justin Zachary WU, Rangarajan KRISHNAN, Qingbo GUO, Chao ZHANG
  • Patent number: 11231807
    Abstract: In some examples, a touch screen includes resistors between the touch electrodes and routing traces. In some examples, the resistors can include a transparent conductive material included in the touch electrodes of the touch screen. The resistors can be located in a border region of the touch screen that can surround an active area of the touch screen that can include the touch electrodes and display pixels of the touch screen, for example. In some examples, the resistors included in the touch screen can have different resistances from each other and the same outer dimensions as one another. The resistors can reduce the variation in resistance from channel to channel in the touch screen, which can improve touch screen performance, for example.
    Type: Grant
    Filed: August 14, 2020
    Date of Patent: January 25, 2022
    Assignee: Apple Inc.
    Inventors: Zhou Lu, Isaac Wing-Tak Chan, Justin Zachary Wu, Rangarajan Krishnan, Qingbo Guo, Chao Zhang
  • Patent number: 11099703
    Abstract: A touch sensor panel can include a silver nanowire touch electrodes formed in a silver nanowire layer on the substrate. In some examples, the touch sensor panel can include one or more anticorrosion layers to protect silver nanowire layer from ionization. In some examples, the silver nanowires include electrochemically stable outer shells that protect the silver nanowires from ionization. Additionally or alternatively, the touch sensor panel can including one or more anti-static layers to protect against electrostatic discharge (ESD). Additionally or alternatively, one or more anticorrosion layers and/or one or more antistatic layers can be formed with a passivation layer therebetween. The passivation layer, one or more anticorrosion layers and/or one or more antistatic layers can then be laminated to the silver nanowire layer to prevent corrosion and/or ESD events in the silver nanowire layer during the fabrication of the touch sensor panel.
    Type: Grant
    Filed: November 12, 2019
    Date of Patent: August 24, 2021
    Assignee: Apple Inc.
    Inventors: Isaac Wing-Tak Chan, Chun-Hao Tung, Sz-Hsiao Chen, Wenqing Dai
  • Patent number: 10901543
    Abstract: Transparent conductors including a silver layer with high transparency and low sheet resistance are described. In some examples, the silver layer can be located between two transparent conductive oxide layers. The transparent conductor can further include additional transparent conductive oxide layers, optical layers, and/or additional conductive layers (e.g., layers including ITO or another fully or partially transparent conductive material), for example. In some examples, transparent conductors including a silver layer can be included in a touch screen device. For example, one or more shielding layers or one or more touch electrodes can include transparent conductors with a silver layer. In some examples, the silver layer can improve transparency, sheet resistance, and/or infrared reflection characteristics of the transparent conductor.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: January 26, 2021
    Assignee: Apple Inc.
    Inventors: Khadijeh Bayat, Isaac Wing-Tak Chan, Cheng Chen, Avery P. Yuen, Rasmi R. Das, Hienminh Huu Le
  • Patent number: 9256306
    Abstract: A sensing apparatus including a first scan line, a second scan line, a readout line, a first sensing device and a second sensing device is provided. The first sensing device is coupled to the first scan line and the readout line, and senses a first energy, and outputs a first readout signal corresponding to the first energy to the readout line in response to a first scan signal on the first scan line. The first sensing device is reset in response to the first scan signal and a reference signal on the readout line. The first sensing device includes a first reset unit configured for resetting the first sensing device, where a first terminal of the first reset unit is coupled to the first scan line, and a control terminal of the first reset unit is coupled to the readout line. A driving method thereof is also provided.
    Type: Grant
    Filed: April 5, 2012
    Date of Patent: February 9, 2016
    Assignee: Industrial Technology Research Institute
    Inventors: Isaac Wing-Tak Chan, Chen-Wei Lin, Chih-Chieh Hsu
  • Patent number: 9257590
    Abstract: A photoelectric element including a transparent bottom electrode, a photosensitive layer, a first electrode, a second electrode and a transparent top electrode is provided. The photosensitive layer is located above the transparent bottom electrode. The first electrode and the second electrode are disposed on the photosensitive layer. The transparent top electrode is located above the photosensitive layer.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: February 9, 2016
    Assignee: Industrial Technology Research Institute
    Inventor: Isaac Wing-Tak Chan
  • Publication number: 20150126364
    Abstract: Disclosed are compounds of Formula 1, N-oxides, and salts thereof, wherein Q is and Z1, Z2, J1, J2, M, R1a, R1b, R2a, R2b, R2c, R2d, R14 and R14a are as defined in the disclosure. Also disclosed are compositions containing the compounds of Formula 1 and methods for controlling an invertebrate pest comprising contacting the invertebrate pest or its environment with a biologically effective amount of a compound or a composition of the invention.
    Type: Application
    Filed: May 13, 2013
    Publication date: May 7, 2015
    Applicant: E I Du Pont de Nemours and Company
    Inventors: Thomas Francis Pahutski, JR., Matthew James Campbell, Dominic Ming-Tak Chan, Jeffrey Keith Long, Thomas Martin Stevenson
  • Patent number: 8791537
    Abstract: Disclosed is a flexible radiation detector including a substrate, a switching device on the substrate, an energy conversion layer on the switching device, a top electrode layer on the energy conversion layer, a first phosphor layer on the top electrode layer, and a second phosphor layer under the substrate.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: July 29, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Issac Wing-Tak Chan, Chao-Chiun Liang, Heng-Yin Chen, Ming-Hua Yeh
  • Patent number: 8727038
    Abstract: The present application is directed to a system providing automatic and manual control of a brake lever on band brake drawworks of a wellbore drilling rig. The system comprises a pneumatic cylinder attached to the brake lever; and a control means in fluid communication with the pneumatic cylinder, the control means being operationally configured to run the pneumatic cylinder in response to information obtained by the control means concerning one or more drilling parameters and operationally configured to disable the pneumatic cylinder.
    Type: Grant
    Filed: January 19, 2011
    Date of Patent: May 20, 2014
    Inventor: Yun Tak Chan
  • Patent number: 8575530
    Abstract: A photosensitive circuit is provided. The photosensitive circuit is adapted to a pixel in a pixel array. The photosensitive circuit includes a display element for generating light, transmitting light, or reflecting light, a control circuit coupled to the display element for controlling light intensity of the display element according to a data line and a gate line, and a photosensitive element coupled between the gate line and a read line for generating current at the read line to sense the position of an object according to a reflected light or a shadow from ambient light when light from the display element is reflected by an object or ambient light is shadowed by the object. The control terminal of the photosensitive element is connected to another gate line.
    Type: Grant
    Filed: December 28, 2010
    Date of Patent: November 5, 2013
    Assignee: Industrial Technology Research Institute
    Inventors: Issac Wing-Tak Chan, Chen-Pang Kung
  • Patent number: 8557637
    Abstract: The disclosure provides a method for fabricating the flexible electronic devices, including: providing a first rigid carrier substrate and a second rigid carrier substrate, wherein at least one flexible electronic device is formed between the first rigid carrier substrate and the second rigid carrier substrate, and a plurality of first de-bonding areas, a first flexible substrate, the flexible electronic device, a second flexible substrate, a plurality of second de-bonding areas and the second rigid carrier substrate are formed on the first rigid carrier substrate; performing a first cutting step to cut through the first de-bonding areas; separating the first rigid carrier substrate from the first de-bonding areas; removing the first rigid carrier substrate from the first de-bonding areas; and performing a second cutting step to cut through the second de-bonding areas; separating and removing the second rigid carrier substrate from the second de-bonding areas.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: October 15, 2013
    Assignee: Industrial Technology Research Institute
    Inventors: Kuang-Jung Chen, Isaac Wing-Tak Chan
  • Patent number: 8552007
    Abstract: Disclosed are compounds of Formula 1, wherein X is O or S; Y is O or S; and R1, R2, R3 and R4 are as defined in the disclosure. Also disclosed are compositions containing the compounds of Formula 1 and methods for controlling an invertebrate pest comprising contacting the invertebrate pest or its environment with a biologically effective amount of a compound or a composition of the invention.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: October 8, 2013
    Assignee: E.I. du Pont de Nemours and Company
    Inventors: Caleb William Holyoke, Jr., My-Hanh Thi Tong, Reed Aaron Coats, Wenming Zhang, Stephen Frederick McCann, Dominic Ming-Tak Chan
  • Publication number: 20130162587
    Abstract: A sensing apparatus including a first scan line, a second scan line, a readout line, a first sensing device and a second sensing device is provided. The first sensing device is coupled to the first scan line and the readout line, and senses a first energy, and outputs a first readout signal corresponding to the first energy to the readout line in response to a first scan signal on the first scan line. The first sensing device is reset in response to the first scan signal and a reference signal on the readout line. The first sensing device includes a first reset unit configured for resetting the first sensing device, where a first terminal of the first reset unit is coupled to the first scan line, and a control terminal of the first reset unit is coupled to the readout line. A driving method thereof is also provided.
    Type: Application
    Filed: April 5, 2012
    Publication date: June 27, 2013
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Isaac Wing-Tak Chan, Chen-Wei Lin, Chih-Chieh Hsu
  • Publication number: 20130161772
    Abstract: Disclosed is a flexible radiation detector including a substrate, a switching device on the substrate, an energy conversion layer on the switching device, a top electrode layer on the energy conversion layer, a first phosphor layer on the top electrode layer, and a second phosphor layer under the substrate.
    Type: Application
    Filed: April 26, 2012
    Publication date: June 27, 2013
    Applicant: Industrial Technology Research Institute
    Inventors: Issac Wing-Tak Chan, Chao-Chiun Liang, Heng-Yin Chen, Ming-Hua Yeh
  • Publication number: 20130068954
    Abstract: Disclosed is a non-planar energy transducer, including a substrate and a switching device disposed thereon. An elastomer having a periodic structure is disposed on the switching device. A bottom electrode is conformally disposed on the elastomer to electrically connect to the switching device. An energy conversion layer is conformally disposed on the bottom electrode, and a top electrode is conformally disposed on the energy conversion layer, wherein the top electrode connects to a positive voltage or a negative voltage.
    Type: Application
    Filed: December 15, 2011
    Publication date: March 21, 2013
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventor: Isaac Wing-Tak CHAN