Patents by Inventor Tak Pui Lou

Tak Pui Lou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8279993
    Abstract: A cylindrical gamma generator includes a coaxial RF-driven plasma ion source and target. A hydrogen plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical gamma generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which has many openings. The plasma generator emanates ions radially over 360° and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired.
    Type: Grant
    Filed: August 14, 2009
    Date of Patent: October 2, 2012
    Assignee: The Regents of the University of California
    Inventors: Ka-Ngo Leung, Tak Pui Lou, William A. Barletta
  • Publication number: 20100172458
    Abstract: A cylindrical gamma generator includes a coaxial RF-driven plasma ion source and target. A hydrogen plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical gamma generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which has many openings. The plasma generator emanates ions radially over 360° and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired.
    Type: Application
    Filed: August 14, 2009
    Publication date: July 8, 2010
    Applicant: REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Ka-Ngo Leung, Tak-Pui Lou, William A. Barletta
  • Publication number: 20100061500
    Abstract: A novel method and compact neutron source for generating thermal neutrons is described that uses an ion source to emit ions toward a target where neutrons are generated. Surrounding the target is a secondary electron shield, and surrounding the target is a first stage moderator to reduce the energy of generated fast neutrons. Enclosing the first stage moderator is a second stage moderator with a thermal neutron port.
    Type: Application
    Filed: June 11, 2007
    Publication date: March 11, 2010
    Applicant: The Regents of the University of California
    Inventors: Tak Pui Lou, Jani Reijonen, Melvin Arthur Piestrup
  • Patent number: 7596197
    Abstract: A cylindrical gamma generator includes a coaxial RF-driven plasma ion source and target. A hydrogen plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical gamma generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which has many openings. The plasma generator emanates ions radially over 360° and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired.
    Type: Grant
    Filed: August 7, 2006
    Date of Patent: September 29, 2009
    Assignee: The Regents of the University of California
    Inventors: Ka-Ngo Leung, Tak Pui Lou, William A. Barletta
  • Publication number: 20090230314
    Abstract: A cylindrical gamma generator includes a coaxial RF-driven plasma ion source and target. A hydrogen plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical gamma generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which has many openings. The plasma generator emanates ions radially over 360° and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired.
    Type: Application
    Filed: August 7, 2006
    Publication date: September 17, 2009
    Inventors: Ka-Ngo Leung, Tak Pui Lou, William A. Barletta
  • Patent number: 7342988
    Abstract: A neutron tube or generator is based on a RF driven plasma ion source having a quartz or other chamber surrounded by an external RF antenna. A deuterium or mixed deuterium/tritium (or even just a tritium) plasma is generated in the chamber and D or D/T (or T) ions are extracted from the plasma. A neutron generating target is positioned so that the ion beam is incident thereon and loads the target. Incident ions cause D-D or D-T (or T-T) reactions which generate neutrons. Various embodiments differ primarily in size of the chamber and position and shape of the neutron generating target. Some neutron generators are small enough for implantation in the body. The target may be at the end of a catheter-like drift tube. The target may have a tapered or conical surface to increase target surface area.
    Type: Grant
    Filed: February 6, 2003
    Date of Patent: March 11, 2008
    Assignee: The Regents of the University of California
    Inventors: Ka-Ngo Leung, Tak Pui Lou, Jani Reijonen
  • Patent number: 6870894
    Abstract: A compact neutron generator has at its outer circumference a toroidal shaped plasma chamber in which a tritium (or other) plasma is generated. A RF antenna is wrapped around the plasma chamber. A plurality of tritium ion beamlets are extracted through spaced extraction apertures of a plasma electrode on the inner surface of the toroidal plasma chamber and directed inwardly toward the center of neutron generator. The beamlets pass through spaced acceleration and focusing electrodes to a neutron generating target at the center of neutron generator. The target is typically made of titanium tubing. Water is flowed through the tubing for cooling. The beam can be pulsed rapidly to achieve ultrashort neutron bursts. The target may be moved rapidly up and down so that the average power deposited on the surface of the target may be kept at a reasonable level. The neutron generator can produce fast neutrons from a T-T reaction which can be used for luggage and cargo interrogation applications.
    Type: Grant
    Filed: April 8, 2003
    Date of Patent: March 22, 2005
    Assignee: The Regents of the University of California
    Inventors: Ka-Ngo Leung, Tak Pui Lou
  • Publication number: 20040022341
    Abstract: A compact neutron generator has at its outer circumference a toroidal shaped plasma chamber in which a tritium (or other) plasma is generated. A RF antenna is wrapped around the plasma chamber. A plurality of tritium ion beamlets are extracted through spaced extraction apertures of a plasma electrode on the inner surface of the toroidal plasma chamber and directed inwardly toward the center of neutron generator. The beamlets pass through spaced acceleration and focusing electrodes to a neutron generating target at the center of neutron generator. The target is typically made of titanium tubing. Water is flowed through the tubing for cooling. The beam can be pulsed rapidly to achieve ultrashort neutron bursts. The target may be moved rapidly up and down so that the average power deposited on the surface of the target may be kept at a reasonable level. The neutron generator can produce fast neutrons from a T-T reaction which can be used for luggage and cargo interrogation applications.
    Type: Application
    Filed: April 8, 2003
    Publication date: February 5, 2004
    Inventors: Ka-Ngo Leung, Tak Pui Lou
  • Publication number: 20030234355
    Abstract: A neutron tube or generator is based on a RF driven plasma ion source having a quartz or other chamber surrounded by an external RF antenna. A deuterium or mixed deuterium/tritium (or even just a tritium) plasma is generated in the chamber and D or D/T (or T) ions are extracted from the plasma. A neutron generating target is positioned so that the ion beam is incident thereon and loads the target. Incident ions cause D-D or D-T (or T-T) reactions which generate neutrons. Various embodiments differ primarily in size of the chamber and position and shape of the neutron generating target. Some neutron generators are small enough for implantation in the body. The target may be at the end of a catheter-like drift tube. The target may have a tapered or conical surface to increase target surface area.
    Type: Application
    Filed: February 6, 2003
    Publication date: December 25, 2003
    Inventors: Ka-Ngo Leung, Tak Pui Lou, Jani Reijonen