Patents by Inventor Takaaki Kanazawa

Takaaki Kanazawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240125096
    Abstract: An object of the present invention is to provide a work management system that enables efficient extraction of approach events that are likely to result in contact between a work machine and a worker.
    Type: Application
    Filed: March 29, 2022
    Publication date: April 18, 2024
    Inventors: Akira KANAZAWA, Ryu NARIKAWA, Shinjirou YAMAMOTO, Takaaki CHIBA, Shinya IMURA
  • Patent number: 11920325
    Abstract: A construction machine is provided that can cause each hydraulic actuator to accurately operate according to operation by an operator in combined operation in which a hydraulic fluid of a hydraulic pump is subjected to flow dividing and is supplied to plural hydraulic actuators. A controller 10, in a case of determining that combined operation is being carried out, controls a regulator 7a in such a manner that the delivery flow rate of a hydraulic pump 7 becomes larger than the total target flow rate of plural hydraulic actuators 4a, 5a, and 6a, and controls the respective opening amounts of plural directional control valves 8a1, 8a3, and 8a5 in such a manner that the difference between the respective target flow rates of the plural hydraulic actuators and the respective inflow flow rates of the plural hydraulic actuators sensed by velocity sensors 12 to 14 becomes small.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: March 5, 2024
    Assignee: HITACHI CONSTRUCTION MACHINERY CO., LTD.
    Inventors: Akira Kanazawa, Hidekazu Moriki, Takaaki Chiba, Shinya Imura
  • Patent number: 10189011
    Abstract: An exhaust gas purifying catalyst with an excellent effect of suppressing deterioration due to aggregation of a noble metal catalyst during endurance at high temperature, and a production method therefor. The method for producing the exhaust gas purifying catalyst that has a porous carrier and a noble metal catalyst supported thereon includes: preparing the porous carrier that contains alumina-ceria-zirconia composite oxide particles and has physical property values, after subjected to baking at 900° C. for 5 hours, of a pore diameter of the particles in the range of 2 to 20 nm, a specific surface area of the particles in the range of 75 to 115 m2/g, a crystallite size of a ceria-zirconia composite oxide contained in the particles in the range of 4 to 6 nm, and a bulk density of the particles in the range of 0.5 to 0.
    Type: Grant
    Filed: September 12, 2017
    Date of Patent: January 29, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takaaki Kanazawa, Shunsuke Haga, Isao Naito, Akiya Chiba, Motoya Abe
  • Patent number: 10130934
    Abstract: Provided is an exhaust gas purifying catalyst with an excellent effect of suppressing deterioration due to aggregation of a noble metal catalyst that would occur during endurance at a high temperature. The exhaust gas purifying catalyst includes a porous support and a noble metal catalyst carried on the porous support. The porous support contains particles of an alumina-ceria-zirconia composite oxide, and the porous support has the following physical property values after subjected to baking at 900° C. for 5 hours: a pore diameter of the particles in the range of 2 to 20 nm, a specific surface area of the particles in the range of 75 to 115 m2/g, a crystallite size of a ceria-zirconia composite oxide that is contained in the particles in the range of 4 to 6 nm, and a bulk density of the particles in the range of 0.5 to 0.9 cm3/g.
    Type: Grant
    Filed: October 18, 2017
    Date of Patent: November 20, 2018
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Takaaki Kanazawa
  • Publication number: 20180071718
    Abstract: An exhaust gas purifying catalyst with an excellent effect of suppressing deterioration due to aggregation of a noble metal catalyst during endurance at high temperature, and a production method therefor. The method for producing the exhaust gas purifying catalyst that has a porous carrier and a noble metal catalyst supported thereon includes: preparing the porous carrier that contains alumina-ceria-zirconia composite oxide particles and has physical property values, after subjected to baking at 900° C. for 5 hours, of a pore diameter of the particles in the range of 2 to 20 nm, a specific surface area of the particles in the range of 75 to 115 m2/g, a crystallite size of a ceria-zirconia composite oxide contained in the particles in the range of 4 to 6 nm, and a bulk density of the particles in the range of 0.5 to 0.
    Type: Application
    Filed: September 12, 2017
    Publication date: March 15, 2018
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, CATALER CORPORATION
    Inventors: Takaaki KANAZAWA, Shunsuke HAGA, Isao NAITO, Akiya CHIBA, Motoya ABE
  • Publication number: 20180036715
    Abstract: Provided is an exhaust gas purifying catalyst with an excellent effect of suppressing deterioration due to aggregation of a noble metal catalyst that would occur during endurance at a high temperature. The exhaust gas purifying catalyst includes a porous support and a noble metal catalyst carried on the porous support. The porous support contains particles of an alumina-ceria-zirconia composite oxide, and the porous support has the following physical property values after subjected to baking at 900° C. for 5 hours: a pore diameter of the particles in the range of 2 to 20 nm, a specific surface area of the particles in the range of 75 to 115 m2/g, a crystallite size of a ceria-zirconia composite oxide that is contained in the particles in the range of 4 to 6 nm, and a bulk density of the particles in the range of 0.5 to 0.9 cm3/g.
    Type: Application
    Filed: October 18, 2017
    Publication date: February 8, 2018
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Takaaki KANAZAWA
  • Patent number: 9539675
    Abstract: [Task] To provide a method that makes it possible to easily, inexpensively and accurately manufacture a machined part with a simple configuration and an excellent strength. [Means for Solution] In a method for manufacturing a machined part according to the invention, a dislocation is partially introduced (S3), through shot peening, only into a surface layer of a raw material 1 in a region 1a to be machined, graphite is partially deposited (S4), through heating, only in the surface layer of the region 1a to be machined, and then, the surface layer of the region 1a where graphite is deposited is removed, through machining (S5), only by an amount corresponding to a working margin 1c, thereby manufacturing a machined part 1?.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: January 10, 2017
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Koji Inagaki, Masahiko Mitsubayashi, Takaaki Kanazawa, Hiroyoshi Tawa
  • Publication number: 20160332144
    Abstract: Provided is an exhaust gas purifying catalyst with an excellent effect of suppressing deterioration due to aggregation of a noble metal catalyst that would occur during endurance at a high temperature. The exhaust gas purifying catalyst includes a porous support and a noble metal catalyst carried on the porous support. The porous support contains particles of an alumina-ceria-zirconia composite oxide, and the porous support has the following physical property values after subjected to baking at 900° C. for 5 hours: a pore diameter of the particles in the range of 2 to 20 nm, a specific surface area of the particles in the range of 75 to 115 m2/g, a crystallite size of a ceria-zirconia composite oxide that is contained in the particles in the range of 4 to 6 nm, and a bulk density of the particles in the range of 0.5 to 0.9 cm3/g.
    Type: Application
    Filed: May 4, 2016
    Publication date: November 17, 2016
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Takaaki KANAZAWA
  • Publication number: 20160305007
    Abstract: A method of manufacturing a ferrous metal component includes: performing an element removal treatment on a workpiece formed of a ferrous metal material; and performing a surface hardening treatment on the workpiece through a carburizing treatment after the element removal treatment. In this method, the element removal treatment is performed under a condition of a higher temperature and a lower pressure than in the carburizing treatment.
    Type: Application
    Filed: December 8, 2014
    Publication date: October 20, 2016
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shinichi HIRAMATSU, Koji INAGAKI, Takaaki KANAZAWA
  • Publication number: 20160024636
    Abstract: A manufacturing method of steel in which an element of the treatment gas is dissolved and diffused includes heating the steel, making a treatment gas contact a surface of the steel such that an element of the treatment gas dissolves and diffuses from the surface of the steel into a surface layer thereof, and reducing a concentration of the treatment gas near a non-treatment surface that is a portion of the surface of the steel.
    Type: Application
    Filed: July 22, 2015
    Publication date: January 28, 2016
    Applicant: Toyota Jidosha Kabushiki Kaisha
    Inventors: Shinichi HIRAMATSU, Koji Inagaki, Takaaki Kanazawa
  • Publication number: 20160006042
    Abstract: An object of the present invention is to provide a supported catalyst for a fuel cell having a high activity, a method of manufacturing thereof, and a fuel cell including the supported catalyst for a fuel cell. A supported catalyst for a fuel cell of the present invention includes a conductive carrier and catalyst particle supported on the conductive carrier and contains platinum. The ratio of the mass of oxygen to the mass of the catalyst particle measured by using an inert gas fusion-nondispersive infrared absorption method is 4 mass % or less.
    Type: Application
    Filed: September 17, 2015
    Publication date: January 7, 2016
    Applicants: CATALER CORPORATION, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yousuke Horiuchi, Tomoaki Terada, Takahiro Nagata, Akihiro Hori, Tetsuo Nagami, Takaaki Kanazawa, Mikihiro Kataoka
  • Publication number: 20150361516
    Abstract: A method of heat treating metal articles includes a heating process of heating a metal workpiece under a predetermined heating condition, a cooling process of cooling the workpiece by spraying mist of cooling water to the workpiece under a predetermined cooling condition after heating the workpiece, and a surface treatment process of adjusting a surface roughness of the workpiece prior to the heating process in line with a thermal distribution in the workpiece heated during the heating process.
    Type: Application
    Filed: January 25, 2013
    Publication date: December 17, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Koji INAGAKI, Takaaki KANAZAWA
  • Patent number: 9027325
    Abstract: An ambient NOx adsorption catalyst that can adsorb NOx contained in an exhaust gas in the presence of CO under standard conditions is placed in an engine exhaust gas passage, in an internal combustion engine. Until an engine post-initiation catalyst is activated, the amounts of a high-boiling-point hydrocarbon and an unsaturated hydrocarbon that are contained in the exhaust gas flowing into the catalyst are reduced so that the NOx-adsorbing activity cannot be deteriorated by the adhesion activity of the hydrocarbons while maintaining the CO concentration in the exhaust gas flowing into the catalyst at a level higher than the concentration required for the adsorption of NOx.
    Type: Grant
    Filed: July 21, 2010
    Date of Patent: May 12, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yusuke Nakayama, Yukihiro Sonoda, Takaaki Itou, Takaaki Kanazawa
  • Patent number: 8993475
    Abstract: An excellent oxygen storage capacity is achieved even in the case used for a long period of time under high temperature conditions. An oxygen storage material contains a first particle made of a composite oxide of cerium and zirconium or a composite oxide of cerium, a rare-earth element other than cerium and zirconium, a second particle including a composite oxide of a rare-earth element, an alkaline-earth element and zirconium, and a precious metal. A part of the precious metal forms a solid solution with the composite oxide included in the second particle.
    Type: Grant
    Filed: June 22, 2007
    Date of Patent: March 31, 2015
    Assignees: Cataler Corporation, Toyota Jidosha Kabushiki Kaisha
    Inventors: Mareo Kimura, Keiichi Narita, Akimasa Hirai, Akiya Chiba, Naoto Miyoshi, Kazunobu Ishibashi, Takaaki Kanazawa, Takeru Yoshida, Hirohisa Tanaka, Mari Uenishi, Isao Tan, Masashi Taniguchi
  • Publication number: 20150075003
    Abstract: [Task] To provide a method that makes it possible to easily, inexpensively and accurately manufacture a machined part with a simple configuration and an excellent strength. [Means for Solution] In a method for manufacturing a machined part according to the invention, a dislocation is partially introduced (S3), through shot peening, only into a surface layer of a raw material 1 in a region 1a to be machined, graphite is partially deposited (S4), through heating, only in the surface layer of the region 1a to be machined, and then, the surface layer of the region 1a where graphite is deposited is removed, through machining (S5), only by an amount corresponding to a working margin 1c, thereby manufacturing a machined part 1?.
    Type: Application
    Filed: March 5, 2012
    Publication date: March 19, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Koji Inagaki, Masahiko Mitsubayashi, Takaaki Kanazawa, Hiroyoshi Tawa
  • Patent number: 8927454
    Abstract: An exhaust gas-purifying catalyst includes a support provided with one or more through-holes through which exhaust gas flows, and a catalytic layer supported by the support and containing an oxygen storage material. The exhaust gas-purifying catalyst includes a first section to which the exhaust gas is supplied, and a second section to which the exhaust gas having passed through the first section is supplied. The catalytic layer includes a layered structure of a first catalytic layer containing platinum and/or palladium and a second catalytic layer containing rhodium in the first catalytic section and further includes a third layer containing rhodium in the second section. The second section is smaller in oxygen storage material content per unit volumetric capacity than the first section.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: January 6, 2015
    Assignee: Cataler Corporation
    Inventors: Minoru Itou, Michihiko Takeuchi, Tetsuya Shinozaki, Takaaki Kanazawa, Masaya Kamada, Tadashi Suzuki, Satoru Katoh, Naoki Takahashi
  • Patent number: 8795619
    Abstract: A catalyst for purification of exhaust gas, in which a noble metal is supported on a metal oxide support, has a basic site content of 1 mmol/L-cat or less, as determined on the basis of an amount of CO2 desorbed per liter of the catalyst as measured by a CO2 temperature-programmed desorption method.
    Type: Grant
    Filed: May 8, 2008
    Date of Patent: August 5, 2014
    Assignees: Toyota Jidosha Kabushiki Kaisha, Cataler Corporation
    Inventors: Tadashi Suzuki, Satoru Kato, Naoki Takahashi, Takaaki Kanazawa, Masanori Yamato, Kazuhiro Yoshimoto, Michihiko Takeuchi, Yuuji Matsuhisa
  • Publication number: 20130216940
    Abstract: An object of the present invention is to provide a supported catalyst for a fuel cell having a high activity, a method of manufacturing thereof, and a fuel cell including the supported catalyst for a fuel cell. A supported catalyst for a fuel cell of the present invention includes a conductive carrier and catalyst particle supported on the conductive carrier and contains platinum. The ratio of the mass of oxygen to the mass of the catalyst particle measured by using an inert gas fusion-nondispersive infrared absorption method is 4 mass % or less.
    Type: Application
    Filed: March 22, 2013
    Publication date: August 22, 2013
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, CATALER CORPORATION
    Inventors: Yousuke HORIUCHI, Tomoaki TERADA, Takahiro NAGATA, Akihiro HORI, Tetsuo NAGAMI, Takaaki KANAZAWA, Mikihiro KATAOKA
  • Publication number: 20130101474
    Abstract: An ambient NOx adsorption catalyst that can adsorb NOx contained in an exhaust gas in the presence of CO under standard conditions is placed in an engine exhaust gas passage, in an internal combustion engine. Until an engine post-initiation catalyst is activated, the amounts of a high-boiling-point hydrocarbon and an unsaturated hydrocarbon that are contained in the exhaust gas flowing into the catalyst are reduced so that the NOx-adsorbing activity cannot be deteriorated by the adhesion activity of the hydrocarbons while maintaining the CO concentration in the exhaust gas flowing into the catalyst at a level higher than the concentration required for the adsorption of NOx.
    Type: Application
    Filed: July 21, 2010
    Publication date: April 25, 2013
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yusuke Nakayama, Yukihiro Sonoda, Takaaki Itou, Takaaki Kanazawa
  • Publication number: 20120295787
    Abstract: An exhaust gas purifying catalyst includes a catalyst powder that includes a ceria-zirconia composite oxide on which platinum (Pt) is supported, and a Ce/alumina powder that includes alumina which contains cerium (Ce) in the structure thereof. The Ce/alumina undergoes only a slight decrease in specific surface area even in a lean atmosphere at a high temperature. The Pt supported on the ceria-zirconia composite oxide forms a Pt—O—Ce bond with the Ce present on surfaces of Ce/alumina so that migration of Pt is restrained and sintering of Pt is prevented.
    Type: Application
    Filed: January 18, 2011
    Publication date: November 22, 2012
    Inventors: Hanae Ikeda, Takaaki Kanazawa