Patents by Inventor Takafumi Yoshimura

Takafumi Yoshimura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240081167
    Abstract: An agricultural work assistance system includes a display to display a map representing an agricultural field, and a controller configured or programmed to define or function as an area setter to set a first area and a second area located inward of the first area in the map displayed by the display, and a route creator to create, in at least one of the first area or the second area, a travel route along which an agricultural machine is to travel. The route creator is configured or programmed to set at least a portion of the travel route as an automatic steering route on which the agricultural machine is to be automatically steered and a travel speed of the agricultural machine is to be changed manually.
    Type: Application
    Filed: November 16, 2023
    Publication date: March 14, 2024
    Inventors: Takanori MORIMOTO, Takafumi MORISHITA, Kenji TAMATANI, Fumiya YOSHIMURA, Ryota KIKUCHI, Ken SAKUTA
  • Publication number: 20240082959
    Abstract: A laser processing apparatus includes a support unit that supports a wafer including a plurality of functional elements disposed adjacent to each other via a street, an irradiation unit that irradiates the street with laser light, and a control unit that controls the irradiation unit based on information about the streets so that a first region and a second region of the street are simultaneously irradiated with the laser light, and a power of the laser light for removing a surface layer of the street in the first region is higher than a power for removing the surface layer of the street in the first region. The information about the street includes information that a processing threshold value indicating a difficulty of laser processing in the first region is lower than a processing threshold value in the second region.
    Type: Application
    Filed: December 20, 2021
    Publication date: March 14, 2024
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Yo SUGIMOTO, Takeshi SAKAMOTO, Takafumi OGIWARA, Naoki UCHIYAMA, Takashi KURITA, Ryo YOSHIMURA
  • Patent number: 8466326
    Abstract: Disclosed are a production method for a ubiquinone powder for use in preparations, including Step 1 of compression molding a ubiquinone crystal powder at a linear molding pressure of from 0.6 to 2.5 tons/cm to obtain a compressed fragment; and Step 2 of grinding the compressed fragment obtained in Step 1 to obtain a powder; and a ubiquinone powder for use in preparations, which is obtained by the subject production method. According to the subject production method, it becomes possible to provide a ubiquinone powder for use in preparations for medicines and health foods, which has a high bulk density, a small angle of repose and excellent handling properties and fluidity, without using an additive such as an excipient, a binder and the like.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: June 18, 2013
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Takafumi Yoshimura, Rieko Nakano, Masayuki Furutani, Takeshi Uchiho
  • Patent number: 8173806
    Abstract: In reacting an anthranilic acid derivative represented by the general formula (1), especially the anthranilic acid derivative selected from anthranilic acid, anthranilamide and anthranilate, with formamide, the reaction is attained under the condition of coexistence of acetic acid and a base as a catalyst in the reaction liquid, and it has made it possible to produce a quinazolin-4-one derivative represented by the general formula (2) and useful as a material for medicine intermediates, at high yield with no side production.
    Type: Grant
    Filed: March 14, 2007
    Date of Patent: May 8, 2012
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Kazuo Tanaka, Yoshifumi Sato, Takafumi Yoshimura
  • Publication number: 20120059194
    Abstract: Disclosed are a production method for a ubiquinone powder for use in preparations, including Step 1 of compression molding a ubiquinone crystal powder at a linear molding pressure of from 0.6 to 2.5 tons/cm to obtain a compressed fragment; and Step 2 of grinding the compressed fragment obtained in Step 1 to obtain a powder; and a ubiquinone powder for use in preparations, which is obtained by the subject production method. According to the subject production method, it becomes possible to provide a ubiquinone powder for use in preparations for medicines and health foods, which has a high bulk density, a small angle of repose and excellent handling properties and fluidity, without using an additive such as an excipient, a binder and the like.
    Type: Application
    Filed: March 29, 2010
    Publication date: March 8, 2012
    Applicant: MITSUBISHI GAS CHEMICAL COMPANY, INC.
    Inventors: Takafumi Yoshimura, Rieko Nakano, Masayuki Furutani, Takeshi Uchiho
  • Patent number: 8093429
    Abstract: Provided are a fluorous-tag-introduced fluoroamine of a general formula (I), its production method, a method of fluorination of a substrate having functional group containing oxygen with the fluoroamine serving as a fluorinating agent, and a method of recovering a fluorous-tag-introduced amide after the fluorination. The fluoroamine and its production method, as well as the fluorination method with the fluoroamine and the method of recovery of a fluorous-tag-introduced amide are ecological and advantageous in industrial use, as the load for separating and collecting the product after the fluorination with the fluoroamine serving as a fluorinating agent is small. (In the formula, R0 is an alkyl group or an aryl group having substituent(s) of Rf—(CH2)m—; Rf is a perfluoroalkyl group; m is from 0 to 2; R1 and R2 each are an alkyl group or an aryl group.
    Type: Grant
    Filed: May 31, 2007
    Date of Patent: January 10, 2012
    Assignees: National University Corporation Hokkaido University, Mitsubishi Gas Chemical Company, Inc.
    Inventors: Toshio Hidaka, Takafumi Yoshimura, Shoji Hara, Tsuyoshi Fukuhara
  • Patent number: 7750182
    Abstract: Provided is a production method for an iodine compound in which iodine is reacted with a substrate in the presence of a porous material having a pore diameter of 500 nm or less or in the presence of the above porous material and an oxidizing agent and a production process for high purity 5-iodo-2-methylbenzoic acid comprising an iodination reaction step carried out by the above-mentioned, a crystal precipitation and separation step in which a product is precipitated by adding water or cooling and then separated and a purification step in which crystal separated is recrystallized using an organic solvent. According to the production method for an iodine compound described above, iodine can be introduced into various substrates at a high selectivity. Since expensive metals and specific reagents do not have to be used, it can readily be carried out in an industrially scale, and the product having a high purity can be obtained.
    Type: Grant
    Filed: February 10, 2004
    Date of Patent: July 6, 2010
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Toshio Hidaka, Takafumi Yoshimura, Yoshifumi Sato, Norio Fushimi, Masaharu Doya
  • Patent number: 7642374
    Abstract: The present invention provides a process for producing 5-iodo-2-methylbenzoic acid through iodination of 2-methylbenzoic acid, the process including, as essential steps, a reaction step of iodinating 2-methylbenzoic acid in the presence of a microporous compound, iodine, an oxidizing agent, and acetic anhydride, and a purification step including sublimation, distillation, crystallization, or a combination of two or more of these. According to the present invention, 5-iodo-2-methylbenzoic acid, which is useful for producing functional chemicals such as drugs, can be produced at high purity and high yield in a simple manner. Since the production process includes a simple reaction step and a simple separation/purification step, the load of purification is mitigated. In addition, the microporous compound such as a zeolite catalyst which has been separated and recovered from the reaction mixture can be repeatedly employed after performing of a simple treatment.
    Type: Grant
    Filed: July 1, 2004
    Date of Patent: January 5, 2010
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Takafumi Yoshimura, Toshio Hidaka, Yoshifumi Sato, Norio Fushimi, Kazuhiro Yamada
  • Patent number: 7638652
    Abstract: Provided is a one-step efficient production method for an ?,?-difluoroamine of a general formula (1) below from an amide compound. The method is an economical method capable of producing the intended ?,?-difluoroamine at high yield by reacting a starting amide compound with carbonyl fluoride and/or oxalyl fluoride under a specific condition.
    Type: Grant
    Filed: July 11, 2007
    Date of Patent: December 29, 2009
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Takafumi Yoshimura, Toshio Hidaka, Norio Fushimi
  • Publication number: 20090247789
    Abstract: Provided is a one-step efficient production method for an ?,?-difluoroamine of a general formula (1) below from an amide compound. The method is an economical method capable of producing the intended ?,?-difluoroamine at high yield by reacting a starting amide compound with carbonyl fluoride and/or oxalyl fluoride under a specific condition.
    Type: Application
    Filed: July 11, 2007
    Publication date: October 1, 2009
    Inventors: Takafumi Yoshimura, Toshio Hidaka, Norio Fushimi
  • Publication number: 20090198086
    Abstract: Provided are a fluorous-tag-introduced fluoroamine of a general formula (I), its production method, a method of fluorination of a substrate having functional group containing oxygen with the fluoroamine serving as a fluorinating agent, and a method of recovering a fluorous-tag-introduced amide after the fluorination. The fluoroamine and its production method, as well as the fluorination method with the fluoroamine and the method of recovery of a fluorous-tag-introduced amide are ecological and advantageous in industrial use, as the load for separating and collecting the product after the fluorination with the fluoroamine serving as a fluorinating agent is small. (In the formula, R0 is an alkyl group or an aryl group having substituent(s) of Rf—(CH2)m—; Rf is a perfluoroalkyl group; m is from 0 to 2; R1 and R2 each are an alkyl group or an aryl group.
    Type: Application
    Filed: May 31, 2007
    Publication date: August 6, 2009
    Inventors: Toshio Hidaka, Takafumi Yoshimura, Shoji Hara, Tsuyoshi Fukuhara
  • Publication number: 20090054646
    Abstract: In reacting an anthranilic acid derivative represented by the general formula (1), especially the anthranilic acid derivative selected from anthranilic acid, anthranilamide and anthranilate, with formamide, the reaction is attained under the condition of coexistence of acetic acid and a base as a catalyst in the reaction liquid, and it has made it possible to produce a quinazolin-4-one derivative represented by the general formula (2) and useful as a material for medicine intermediates, at high yield with no side production.
    Type: Application
    Filed: March 14, 2007
    Publication date: February 26, 2009
    Inventors: Kazuo Tanaka, Yoshifumi Sato, Takafumi Yoshimura
  • Patent number: 7405331
    Abstract: The process for producing a (fluoroalkyl)benzene derivative according to the present invention comprises a step of reducing the total content of group 3 to group 12 transition metals in an alkylbenzene derivative to 500 ppm or less in terms of metal atoms; a step of halogenating the branched alkyl group of the purified alkylbenzene derivative by a photohalogenation to obtain a (haloalkyl)benzene derivative; and a step of subjecting the (haloalkyl)benzene derivative to a halogen-fluorine exchange using HF in an amount of 10 mol or higher per one mole of the (haloalkyl)benzene derivative. The (fluoroalkyl)benzene derivative produced by the process is reduced in the content of impurities such as residual halogens and residual metals, and is useful as intermediates for functional chemical products for use in applications such as medicines and electronic materials.
    Type: Grant
    Filed: April 24, 2003
    Date of Patent: July 29, 2008
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Toshio Hidaka, Norio Fushimi, Takafumi Yoshimura, Takeshi Kawai
  • Patent number: 7297821
    Abstract: A fluorine compound represented by Formula (1) is provided. The above fluorine compound is effective for introducing a fluorine atom into a compound having an active group such as an oxygen-containing functional group, and it can be used for uses of surface treatment, cleaning and coating. Further, after the fluorination reaction, the above compound is recovered and can be reused as a starting material for producing the above fluorine compound, and it is useful for various fluorination processes. (wherein X represents a nitrogen or phosphorus atom; R0, R1, and R2 represent hydrogen, an alkyl group or aryl group which may have a substituent, and they each may be the same or different; and R0, R1, and R2 may be combined with each other to form a ring).
    Type: Grant
    Filed: December 9, 2005
    Date of Patent: November 20, 2007
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Toshio Hidaka, Norio Fushimi, Takafumi Yoshimura, Takeshi Kawai
  • Publication number: 20060167324
    Abstract: The process for producing a (fluoroalkyl)benzene derivative according to the present invention comprises a step of reducing the total content of group 3 to group 12 transition metals in an alkylbenzene derivative to 500 ppm or less in terms of metal atoms; a step of halogenating the branched alkyl group of the purified alkylbenzene derivative by a photohalogenation to obtain a (haloalkyl)benzene derivative; and a step of subjecting the (haloalkyl)benzene derivative to a halogen-fluorine exchange using HF in an amount of 10 mol or higher per one mole of the (haloalkyl)benzene derivative. The (fluoroalkyl)benzene derivative produced by the process is reduced in the content of impurities such as residual halogens and residual metals, and is useful as intermediates for functional chemical products for use in applications such as medicines and electronic materials.
    Type: Application
    Filed: April 24, 2003
    Publication date: July 27, 2006
    Inventors: Toshio Hidaka, Norio Fushimi, Takafumi Yoshimura, Takeshi Kawai
  • Publication number: 20060167312
    Abstract: The present invention provides a process for producing 5-iodo-2-methylbenzoic acid through iodination of 2-methylbenzoic acid, the process including, as essential steps, a reaction step of iodinating 2-methylbenzoic acid in the presence of a microporous compound, iodine, an oxidizing agent, and acetic anhydride, and a purification step including sublimation, distillation, crystallization, or a combination of two or more of these. According to the present invention, 5-iodo-2-methylbenzoic acid, which is useful for producing functional chemicals such as drugs, can be produced at high purity and high yield in a simple manner. Since the production process includes a simple reaction step and a simple separation/purification step, the load of purification is mitigated. In addition, the microporous compound such as a zeolite catalyst which has been separated and recovered from the reaction mixture can be repeatedly employed after performing of a simple treatment.
    Type: Application
    Filed: July 1, 2004
    Publication date: July 27, 2006
    Inventors: Takafumi Yoshimura, Toshio Hidaka, Yoshifumi Sato, Norio Fushimi, Kazuhiro Yamada
  • Publication number: 20060161028
    Abstract: Provided is a production method for an iodine compound in which iodine is reacted with a substrate in the presence of a porous material having a pore diameter of 500 nm or less or in the presence of the above porous material and an oxidizing agent and a production process for high purity 5-iodo-2-methylbenzoic acid comprising an iodination reaction step carried out by the above-mentioned, a crystal precipitation and separation step in which a product is precipitated by adding water or cooling and then separated and a purification step in which crystal separated is recrystallized using an organic solvent. According to the production method for an iodine compound described above, iodine can be introduced into various substrates at a high selectivity. Since expensive metals and specific reagents do not have to be used, it can readily be carried out in an industrially scale, and the product having a high purity can be obtained.
    Type: Application
    Filed: February 10, 2004
    Publication date: July 20, 2006
    Inventors: Toshio Hidaka, Takafumi Yoshimura, Yoshifumi Sato, Norio Fushimi, Masaharu Doya
  • Publication number: 20060089513
    Abstract: A fluorine compound represented by Formula (1) is provided. The above fluorine compound is effective for introducing a fluorine atom into a compound having an active group such as an oxygen-containing functional group, and it can be used for uses of surface treatment, cleaning and coating. Further, after the fluorination reaction, the above compound is recovered and can be reused as a starting material for producing the above fluorine compound, and it is useful for various fluorination processes. (wherein X represents a nitrogen or phosphorus atom; R0, R1, and R2 represent hydrogen, an alkyl group or aryl group which may have a substituent, and they each may be the same or different; and R0, R1, and R2 may be combined with each other to form a ring).
    Type: Application
    Filed: December 9, 2005
    Publication date: April 27, 2006
    Inventors: Toshio Hidaka, Norio Fushimi, Takafumi Yoshimura, Takeshi Kawai
  • Patent number: 7019173
    Abstract: A fluorine compound represented by Formula (1) is provided. The above fluorine compound is effective for introducing a fluorine atom into a compound having an active group such as an oxygen-containing functional group, and it can be used for uses of surface treatment, cleaning and coating. Further, after the fluorination reaction, the above compound is recovered and can be reused as a starting material for producing the above fluorine compound, and it is useful for various fluorination processes. (wherein X represents a nitrogen or phosphorus atom; R0, R1, and R2 represent hydrogen, an alkyl group or aryl group which may have a substituent, and they each may be the same or different; and R0, R1, and R2 may be combined with each other to form a ring).
    Type: Grant
    Filed: August 22, 2002
    Date of Patent: March 28, 2006
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Toshio Hidaka, Norio Fushimi, Takafumi Yoshimura, Takeshi Kawai
  • Publication number: 20040073065
    Abstract: A fluorine compound represented by Formula (1) is provided. The above fluorine compound is effective for introducing a fluorine atom into a compound having an active group such as an oxygen-containing functional group, and it can be used for uses of surface treatment, cleaning and coating. Further, after the fluorination reaction, the above compound is recovered and can be reused as a starting material for producing the above fluorine compound, and it is useful for various fluorination processes.
    Type: Application
    Filed: June 4, 2003
    Publication date: April 15, 2004
    Inventors: Toshio Hidaka, Norio Fushimi, Takafumi Yoshimura, Takeshi Kawai