Patents by Inventor Takahiko Machita

Takahiko Machita has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110091744
    Abstract: The present invention relates to a method of manufacturing a DFL type thin film magnetic head. The method includes laminating each of the layers from the lower magnetization control layer to the upper exchange coupling layer above the substrate; laminating an auxiliary magnetization control layer including at least a CoZrTa layer above the upper exchange coupling layer; forming at least each of the layers from the lower exchange coupling layer to the auxiliary magnetization control layer in pillar shape, and disposing the bias magnetic field application layer at an opposite position with respect to the ABS of each of the pillar shaped layers; trimming the auxiliary magnetization control layer by removing a part of the auxiliary magnetization control layer that is formed in the pillar shape, and disposing the upper shield layer such that the trimmed auxiliary magnetization control layer is at least covered.
    Type: Application
    Filed: October 20, 2009
    Publication date: April 21, 2011
    Applicant: TDK CORPORATION
    Inventors: Keita Kawamori, Yoshihiro Tsuchiya, Daisuke Miyauchi, Takahiko Machita
  • Patent number: 7929257
    Abstract: A magnetic thin film has a pinned layer whose magnetization direction is fixed with respect to an external magnetic field, a free layer whose magnetization direction is changed according to the external magnetic field, and a spacer layer which is sandwiched between said pinned layer and said free layer. Sense current is configured to flow in a direction that is perpendicular to film surfaces of said pinned layer, said spacer layer, and said free layer. Said spacer layer has a CuZn metal alloy which includes an oxide region, said oxide region consisting of an oxide of any of Al, Si, Cr, Ti, Hf, Zr, Zn, and Mg.
    Type: Grant
    Filed: February 23, 2007
    Date of Patent: April 19, 2011
    Assignee: TDK Corporation
    Inventors: Takahiko Machita, Tomohito Mizuno, Yoshihiro Tsuchiya, Daisuke Miyauchi, Shinji Hara
  • Patent number: 7916431
    Abstract: An MR element includes a stack of layers including a first ferromagnetic layer, a second ferromagnetic layer, and a spacer layer disposed between the first and the second ferromagnetic layer. The stack of layers has an outer surface, and the spacer layer has a periphery located in the outer surface of the stack of layers. The magnetoresistive element further includes an insulating film that touches the periphery of the spacer layer. The spacer layer includes a layer made of an oxide semiconductor composed of an oxide of a first metal. The insulating film includes a contact film that touches the periphery of the spacer layer and that is made of an oxide of a second metal having a Pauling electronegativity lower than that of the first metal by 0.1 or more.
    Type: Grant
    Filed: August 27, 2007
    Date of Patent: March 29, 2011
    Assignee: TDK Corporation
    Inventors: Yoshihiro Tsuchiya, Tomohito Mizuno, Shinji Hara, Daisuke Miyauchi, Takahiko Machita
  • Patent number: 7916429
    Abstract: A magnetic field detecting element comprising: a stack including an upper and magnetic layer, a lower magnetic layer, and a non-magnetic intermediate layer sandwiched therebetween, an upper and lower shield electrode layer provided in a manner that they sandwich said stack therebetween in a direction of stacking of the stack, wherein the upper and lower shield electrode layer supply sense current in the direction of stacking and magnetically shield the stack; a bias magnetic layer provided on a surface of the stack, the surface being opposite to an air bearing surface of said stack, and insulating films provided on both sides of the stack with regard to a track width direction thereof. The bias magnetic layer has a larger thickness than the stack, and the upper shield electrode layer and/or said lower shield electrode layer includes an auxiliary shield layer which fills a stepped portion formed by the stack and bias magnetic layer.
    Type: Grant
    Filed: July 30, 2007
    Date of Patent: March 29, 2011
    Assignee: TDK Corporation
    Inventors: Daisuke Miyauchi, Takahiko Machita
  • Publication number: 20110069417
    Abstract: An MR element in a CPP structure includes an MR part configured with a nonmagnetic layer, a first ferromagnetic layer that functions as first free layer and a second ferromagnetic layer that functions as a second free layer, and first and second ferromagnetic layers are laminated to sandwich the nonmagnetic intermediate layer, and a sense current flows in a lamination direction of the MR part, an orthogonalizing bias function part, which influences a substantial orthogonalization function for magnetization directions of the first ferromagnetic layer and the second ferromagnetic layer, is formed on the rear side the MR part, side shield layers are disposed on both sides in the width direction of the MR part, the side shield layers are perpendicular magnetized layers with a magnetic shield function, and magnetization directions of the perpendicular magnetized layers are in an orthogonal direction that corresponds to the thickness direction.
    Type: Application
    Filed: September 22, 2009
    Publication date: March 24, 2011
    Applicant: TDK CORPORATION
    Inventors: Keita Kawamori, Yoshihiro Tsuchiya, Daisuke Miyauchi, Takahiko Machita
  • Patent number: 7911744
    Abstract: The invention provides a giant magneto-resistive effect device (CPP-GMR device) having a CPP (current perpendicular to plane) structure comprising a multilayer device assembly comprising a fixed magnetization layer, a spacer layer, a free layer and a cap layer stacked one upon another in order, with a sense current applied in a stacking direction of the multilayer device assembly. In the rear of the multilayer device assembly, there is a refilled insulation layer formed, which is in contact with the rear end face of the multilayer device assembly and extends rearward, wherein the uppermost position P of the refilled insulation layer that is in contact with the rear end face of said multilayer device assembly lies at a rear end face of the cap layer and is set in such a way as to satisfy a relation: 0.2?(T2/T1)<1 where T1 is the thickness of the cap layer, and T2 is the absolute value of a distance from the uppermost portion of the cap layer down to the position P as viewed in a thickness direction.
    Type: Grant
    Filed: June 26, 2007
    Date of Patent: March 22, 2011
    Assignee: TDK Corporation
    Inventors: Takahiko Machita, Daisuke Miyauchi
  • Publication number: 20110051291
    Abstract: A thin film magnetic head includes first and second shield layers that are positioned on both sides of a magnetoresistive (MR) stack with respect to a film surface orthogonal direction; a first exchange-coupling layer that is positioned between the MR stack and the first shield layer and that generates an exchange-coupling between a first magnetoresistive (MR) magnetic layer and a first magnetic control layer of the first shield layer; a second exchange-coupling layer that is positioned between the MR stack and the second shield layer and that generates an exchange-coupling between a second magnetoresistive (MR) magnetic layer and a second magnetic control layer of the second shield layer; a bias magnetic field application layer that is disposed at an opposite surface of the MR stack from an air bearing surface (ABS) and that applies a bias magnetic field to the MR stack in a direction orthogonal to the ABS; and pair of side shield layers that are positioned at both sides of the MR stack with respect to a tra
    Type: Application
    Filed: August 31, 2009
    Publication date: March 3, 2011
    Applicant: TDK CORPORATION
    Inventors: Daisuke Miyauchi, Keita Kawamori, Takahiko Machita
  • Patent number: 7881021
    Abstract: A magnetoresistive device with CPP structure, comprising a nonmagnetic intermediate layer, and a first ferromagnetic layer and a second ferromagnetic layer stacked and formed with said nonmagnetic intermediate layer interposed between them, wherein each of said first and second ferromagnetic layers comprises a sensor area joining to the nonmagnetic intermediate layer and a magnetization direction control area that extends further rearward from the position of the rear end of said nonmagnetic intermediate layer; a magnetization direction control multilayer arrangement is interposed at an area where the magnetization direction control area for said first ferromagnetic layer is opposite to the magnetization direction control area for said second ferromagnetic layer to produce magnetizations of the said first and second ferromagnetic layers which are antiparallel with each other; and said sensor area is provided at both width direction ends with biasing layers working such that the mutually antiparallel magnetiza
    Type: Grant
    Filed: January 30, 2008
    Date of Patent: February 1, 2011
    Assignee: TDK Corporation
    Inventors: Tsutomu Chou, Yoshihiro Tsuchiya, Daisuke Miyauchi, Takahiko Machita, Shinji Hara, Tomohito Mizuno, Hironobu Matsuzawa, Toshiyuki Ayukawa, Koji Shimazawa, Kiyoshi Noguchi
  • Patent number: 7881023
    Abstract: The invention provides a magnetoresistive device with the CPP (current perpendicular to plane) structure, comprising a magnetoresistive unit, and a first shield layer and a second shield layer located and formed such that the magnetoresistive unit is sandwiched between them, with a sense current applied in a stacking direction, wherein the magnetoresistive unit comprises a nonmagnetic intermediate layer, and a first ferromagnetic layer and a second ferromagnetic layer stacked and formed such that the nonmagnetic intermediate layer is interposed between them, wherein the first shield layer, and the second shield layer is controlled by magnetization direction control means in terms of magnetization direction, and the first ferromagnetic layer, and the second ferromagnetic layer receives action such that there is an antiparallel magnetization state created, in which mutual magnetizations are in opposite directions, under the influences of magnetic actions of the first shield layer and the second shield layer.
    Type: Grant
    Filed: January 24, 2008
    Date of Patent: February 1, 2011
    Assignee: TDK Corporation
    Inventors: Takahiko Machita, Koji Shimazawa, Daisuke Miyauchi, Tsutomu Chou
  • Patent number: 7876535
    Abstract: A magnetoresistive device of a CPP (current perpendicular to plane) structure includes a magnetoresistive unit sandwiched between a first substantially soft magnetic shield layer from below, and a second substantially soft magnetic shield layer from above, with a sense current applied in a stacking direction. The magnetoresistive unit includes a non-magnetic intermediate layer sandwiched between a first ferromagnetic layer, and a second ferromagnetic layer. At least one of the first and second shield layers is configured in a window frame of a planar shape, including a front frame-constituting portion and a back frame-constituting portion partially comprising a combination of a nonmagnetic gap layer with a bias magnetic field-applying layer. The combination of the nonmagnetic gap layer with the bias magnetic field-applying layer forms a closed magnetic path with magnetic flux going all the way around the window framework, turning the magnetization of the front frame-constituting portion into a single domain.
    Type: Grant
    Filed: January 24, 2008
    Date of Patent: January 25, 2011
    Assignee: TDK Corporation
    Inventors: Takahiko Machita, Koji Shimazawa, Daisuke Miyauchi, Tsutomu Chou
  • Patent number: 7869166
    Abstract: A thin film magnetic head has: a spin valve having a pinned layer whose having a fixed magnetization direction, a first nonmagnetic intermediate layer disposed on the pinned layer, and a free layer having a variable magnetization direction, the free layer disposed on the first nonmagnetic intermediate layer; and bias magnetic layers for applying a bias magnetic field to the free layer provided on both sides of the spin valve. The pinned layer has a hard magnetic layer, a second nonmagnetic intermediate layer disposed on the hard magnetic layer, and a ferromagnetic layer disposed on the second nonmagnetic intermediate layer. The bias magnetic layer has a bias antiferromagnetic layer, and a bias ferromagnetic layer disposed on the bias antiferromagnetic layer. A height direction dimension of the pinned layer is longer than a track width direction dimension, and longer than a height direction dimension of the free layer.
    Type: Grant
    Filed: February 20, 2007
    Date of Patent: January 11, 2011
    Assignee: TDK Corporation
    Inventors: Daisuke Miyauchi, Shinji Hara, Takahiko Machita
  • Patent number: 7869165
    Abstract: A magnetic field detecting element comprising: a stack including an upper magnetic layer, a lower magnetic layer and a non-magnetic intermediate layer sandwiched between said upper magnetic layer and said lower magnetic layer, wherein magnetization directions of said upper magnetic layer and said lower magnetic layer change in accordance with an external magnetic field; an upper shield electrode layer and a lower shield electrode layer which are provided in a manner that they sandwich said stack therebetween in a direction of stacking of said stack, wherein said upper shield electrode layer and said lower shield electrode layer supply sense current in the direction of stacking and magnetically shield said stack; a bias magnetic layer which is provided on a surface of said stack, the surface being opposite to an air bearing surface of said stack, wherein said bias magnetic layer applies a bias magnetic field to said upper magnetic layer and to said lower magnetic layer in a direction perpendicular to the air b
    Type: Grant
    Filed: July 30, 2007
    Date of Patent: January 11, 2011
    Assignee: TDK Corporation
    Inventors: Daisuke Miyauchi, Takahiko Machita
  • Patent number: 7843668
    Abstract: A magnetoresistive element includes a first and a second shield, and an MR stack disposed between the shields. The MR stack includes a first and a second ferromagnetic layer, and a nonmagnetic spacer layer disposed between the ferromagnetic layers. The first and second ferromagnetic layers have magnetizations that are in directions antiparallel to each other when no external magnetic field is applied to the layers, and that change directions in response to an external magnetic field. An insulating layer is formed to touch a rear end face of the MR stack and the first shield, and a bias magnetic field applying layer is formed above the insulating layer with a buffer layer disposed in between. The bias magnetic field applying layer includes a hard magnetic layer and a high saturation magnetization layer. The high saturation magnetization layer is located between the rear end face and the hard magnetic layer, but not located between the first shield and the hard magnetic layer.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: November 30, 2010
    Assignee: TDK Corporation
    Inventors: Takahiko Machita, Kei Hirata, Koji Shimazawa, Daisuke Miyauchi
  • Patent number: 7810227
    Abstract: Using a beam of xenon ions together with a suitable mask, a GMR stack is ion milled until a part of it, no more than about 0.1 microns thick, has been removed so that a pedestal, having sidewalls comprising a vertical section that includes all of the free layer, has been formed. This is followed by formation of the dielectric and conductive lead layers in the usual way. Using xenon as the sputtering gas enables the point at which milling is terminated to be more precisely controlled.
    Type: Grant
    Filed: October 18, 2007
    Date of Patent: October 12, 2010
    Assignees: Headway Technologies, Inc., TDK Corporation
    Inventors: Stuart Kao, Chunping Luo, Chaopeng Chen, Takahiko Machita, Daisuke Miyauchi, Jeiwei Chang
  • Publication number: 20100232074
    Abstract: A magnetoresistive effect element is structured in the manner that the antiferromagnetic layer interposed between the upper and lower shields is eliminated and the antiferromagnetic layer is positioned in a so-called shield layer. Therefore, it is realized to solve a pin reversal problem and to allow narrower tracks and narrower read gaps.
    Type: Application
    Filed: March 13, 2009
    Publication date: September 16, 2010
    Applicant: TDK CORPORATION
    Inventors: Takahiko Machita, Tomohito Mizuno, Koji Shimazawa, Tsutomu Chou, Daisuke Miyauchi, Yoshihiro Tsuchiya, Shinji Hara, Toshiyuki Ayukawa
  • Patent number: 7764471
    Abstract: A magnetoresistance effect element (MR element) for use in a thin-film magnetic head has a buffer layer, an antiferromagnetic layer, a pinned layer, a spacer layer, a free layer, and a cap layer that are successively stacked. A sense current flows in a direction perpendicular to layer surfaces via a lower shield layer and an upper shield layer. The pinned layer comprises an outer layer having a fixed magnetization direction, a nonmagnetic intermediate layer, and an inner layer in the form of a ferromagnetic layer. The spacer layer comprises a first nonmagnetic metal layer, a semiconductor layer made of ZnO, and a second nonmagnetic metal layer. The inner layer or the outer layer includes a diffusion blocking layer made of an oxide of an element whose electronegativity is equal to or smaller than Zn, e.g., ZnO, TaO, ZrO, MgO, TiO, or HfO, or made of RuO.
    Type: Grant
    Filed: March 12, 2007
    Date of Patent: July 27, 2010
    Assignee: TDK Corporation
    Inventors: Tomohito Mizuno, Takahiko Machita, Kei Hirata, Yoshihiro Tsuchiya, Shinji Hara
  • Publication number: 20100163519
    Abstract: A method for manufacturing a thin film magnetic head includes a step for forming an MR layered body; a step for forming a first sacrificial layer made of material removable by wet etching, and subsequently, forming a cap layer on the upper surface of the first sacrificial layer; further, a step for patterning the MR layered body and the cap layer and then filling part of the removed areas of the MR layered body and the cap layer with a bias magnetic layer and the remaining with insulating layers; a step for removing the cap layer by dry etching and, subsequently, removing the first sacrificial layer by wet etching; and a step for forming a second shield layer above the MR layered body and the bias magnetic layer.
    Type: Application
    Filed: December 30, 2008
    Publication date: July 1, 2010
    Applicant: TDK CORPORATION
    Inventors: Toshiyuki Ayukawa, Shinji Hara, Daisuke Miyauchi, Takahiko Machita, Yoshihiro Tsuchiya
  • Patent number: 7739787
    Abstract: In an MR element, each of a pinned layer and a free layer includes a Heusler alloy layer. The Heusler alloy layer has two surfaces that are quadrilateral in shape and face toward opposite directions. The Heusler alloy layer includes one crystal grain that touches four sides of one of the two surfaces. In a method of manufacturing the MR element, a layered film to be the MR element is formed and patterned, and then heat treatment is performed on the layered film patterned, so that crystal grains included in a film to be the Heusler alloy layer in the layered film grow and one crystal grain that touches four sides of one of the surfaces of the film to be the Heusler alloy layer is thereby formed.
    Type: Grant
    Filed: March 8, 2007
    Date of Patent: June 22, 2010
    Assignee: TDK Corporation
    Inventors: Koji Shimazawa, Yoshihiro Tsuchiya, Tomohito Mizuno, Daisuke Miyauchi, Shinji Hara, Takahiko Machita
  • Publication number: 20100149689
    Abstract: A thin film magnetic head includes a magnetoresistance (MR) layered body that has first and second magnetic layers whose magnetization direction are changed according to an external magnetic field, a nonmagnetic middle layer and where the first magnetic layer, the nonmagnetic middle layer and the second magnetic layer are disposed in a manner of facing each other in respective order, first and second shield layers that are disposed in a manner of sandwiching the MR-stack in the film surface orthogonal direction of the MR-stack facing the first magnetic layer and the second magnetic layer, respectively, and that also serve as an electrode for applying a sense current to the film surface orthogonal direction of the MR-stack; and a bias magnetic field application means that is disposed on an opposite surface of an air bearing surface (ABS) of the MR-stack, and that applies a bias magnetic field to the MR-stack in the direction orthogonal to the ABS.
    Type: Application
    Filed: December 11, 2008
    Publication date: June 17, 2010
    Applicant: TDK CORPORATION
    Inventors: Yoshihiro Tsuchiya, Tsutomu Chou, Daisuke Miyauchi, Shinji Hara, Takahiko Machita, Hironobu Matsuzawa
  • Patent number: 7733612
    Abstract: In the GMR device of the CPP structure using the synthetic pinned layer as the fixed magnetization layer (pinned layer), the width W1 of the inner pin layer is set at 50 nm or less; the fixed magnetization layer is configured in such a way as to have a given angle range of tapers at both its ends as viewed from the medium opposite plane; the magnetic volume ratio between the inner and the outer pin layer is allowed to lie in the range of 0.9 to 1.1; and the magnetic thickness ratio between the inner and the outer pin layer is set at 0.8 or less. It is thus possible to make the outer pin layer thin at no cost of the thickness of the inner pin layer forming a part of the synthetic pinned layer yet without doing damage to the function of the synthetic pinned layer itself, viz., resistance to an external magnetic field.
    Type: Grant
    Filed: July 5, 2007
    Date of Patent: June 8, 2010
    Assignee: TDK Corporation
    Inventors: Daisuke Miyauchi, Takahiko Machita